Video_7_The Serpentine Illusion: A Visual Motion Illusion Induced by Phase-Shifted Line Gratings.MP4 (6.03 MB)
Download file

Video_7_The Serpentine Illusion: A Visual Motion Illusion Induced by Phase-Shifted Line Gratings.MP4

Download (6.03 MB)
media
posted on 07.12.2020, 05:00 by Junxiang Luo, Zheyuan Chen, Yiliang Lu, Lothar Spillmann, Ian Max Andolina, Wei Wang

In a pattern of horizontal lines containing ± 45° zigzagging phase-shifted strips, vivid illusory motion is perceived when the pattern is translated up or down at a moderate speed. Two forms of illusory motion are seen: [i] a motion “racing” along the diagonal interface between the strips and [ii] lateral (sideways) motion of the strip sections. We found the relative salience of these two illusory motions to be strongly influenced by the vertical spacing and length of the line gratings, and the period length of the zigzag strips. Both illusory motions are abolished when the abutting strips are interleaved, separated by a gap or when a real line is superimposed at the interface. Illusory motion is also severely weakened when equiluminant colored grating lines are used. Illusory motion perception is fully restored at < 20% luminance contrast. Using adaptation, we find that line-ends alone are insufficient for illusory motion perception, and that both physical carrier motion and line orientation are required. We finally test a classical spatiotemporal energy model of V1 cells that exhibit direction tuning changes that are consistent with the direction of illusory motion. Taking this data together, we constructed a new visual illusion and surmise its origin to interactions of spatial and temporal energy of the lines and line-ends preferentially driving the magnocellular pathway.

History

References