Video_5_The Serpentine Illusion: A Visual Motion Illusion Induced by Phase-Shifted Line Gratings.MP4
In a pattern of horizontal lines containing ± 45° zigzagging phase-shifted strips, vivid illusory motion is perceived when the pattern is translated up or down at a moderate speed. Two forms of illusory motion are seen: [i] a motion “racing” along the diagonal interface between the strips and [ii] lateral (sideways) motion of the strip sections. We found the relative salience of these two illusory motions to be strongly influenced by the vertical spacing and length of the line gratings, and the period length of the zigzag strips. Both illusory motions are abolished when the abutting strips are interleaved, separated by a gap or when a real line is superimposed at the interface. Illusory motion is also severely weakened when equiluminant colored grating lines are used. Illusory motion perception is fully restored at < 20% luminance contrast. Using adaptation, we find that line-ends alone are insufficient for illusory motion perception, and that both physical carrier motion and line orientation are required. We finally test a classical spatiotemporal energy model of V1 cells that exhibit direction tuning changes that are consistent with the direction of illusory motion. Taking this data together, we constructed a new visual illusion and surmise its origin to interactions of spatial and temporal energy of the lines and line-ends preferentially driving the magnocellular pathway.
History
References
- https://doi.org//10.1364/josaa.2.000284
- https://doi.org//10.1523/jneurosci.1900-12.2012
- https://doi.org//10.1016/s0893-6080(03)00111-4
- https://doi.org//10.1016/j.visres.2004.03.015
- https://doi.org//10.1152/jn.01093.2004
- https://doi.org//10.1152/jn.00433.2018
- https://doi.org//10.1113/jphysiol.1969.sp008862
- https://doi.org//10.1068/p2722
- https://doi.org//10.1016/s0042-6989(98)00056-x
- https://doi.org//10.1016/j.visres.2006.12.020
- https://doi.org//10.1016/0042-6989(81)90080-8
- https://doi.org//10.1523/jneurosci.17-21-08621.1997
- https://doi.org//10.1016/0042-6989(91)90169-6
- https://doi.org//10.1068/p3378
- https://doi.org//10.1016/0042-6989(85)90129-4
- https://doi.org//10.1364/josaa.1.000893
- https://doi.org//10.1007/s00422-014-0602-x
- https://doi.org//10.1523/jneurosci.1084-05.2005
- https://doi.org//10.1177/1534582305285120
- https://doi.org//10.1152/jn.1987.57.3.835
- https://doi.org//10.1016/s0896-6273(00)81036-3
- https://doi.org//10.1016/0042-6989(92)90130-b
- https://doi.org//10.1038/nn0905-1125a
- https://doi.org//10.1016/0042-6989(94)00264-m
- https://doi.org//10.1016/s0166-2236(96)10036-9
- https://doi.org//10.1016/0042-6989(95)00198-0
- https://doi.org//10.1068/p5531
- https://doi.org//10.1068/p7005
- https://doi.org//10.1038/367268a0
- https://doi.org//10.1016/0042-6989(94)90319-0
- https://doi.org//10.1068/p6383
- https://doi.org//10.1016/s0042-6989(99)00103-0
- https://doi.org//10.1038/scientificamerican0476-48
- https://doi.org//10.1068/p260831
- https://doi.org//10.1016/0042-6989(92)90182-i
- https://doi.org//10.1016/j.neuron.2013.02.024
- https://doi.org//10.1126/science.3283936
- https://doi.org//10.1073/pnas.96.14.8289
- https://doi.org//10.1523/jneurosci.2112-18.2019
- https://doi.org//10.1152/jn.01094.2004
- https://doi.org//10.1016/j.visres.2009.03.004
- https://doi.org//10.1111/j.1460-9568.2010.07095.x
- https://doi.org//10.1523/jneurosci.4173-06.2007
- https://doi.org//10.1523/jneurosci.07-07-02239.1987
- https://doi.org//10.1016/0042-6989(92)90240-j
- https://doi.org//10.1111/j.1475-1313.1992.tb00290.x
- https://doi.org//10.1016/j.tics.2013.07.004
- https://doi.org//10.1093/cercor/bhm176
- https://doi.org//10.1016/0042-6989(88)90052-1
- https://doi.org//10.1523/jneurosci.3226-05.2006
- https://doi.org//10.1016/s0042-6989(00)00072-9
- https://doi.org//10.1038/275055a0
- https://doi.org//10.1093/cercor/11.7.648
- https://doi.org//10.1073/pnas.84.23.8740
- https://doi.org//10.1016/j.brainres.2008.08.029
- https://doi.org//10.1016/s0896-6273(00)81038-7
- https://doi.org//10.1016/s0042-6989(97)00183-1
- https://doi.org//10.1016/0042-6989(95)00107-b
- https://doi.org//10.1068/p241333
- https://doi.org//10.1016/0042-6989(92)90209-2
- https://doi.org//10.1016/s0042-6989(03)00086-5
- https://doi.org//10.1523/jneurosci.19-15-06571.1999
- https://doi.org//10.1016/0042-6989(82)90153-5
- https://doi.org//10.1038/nn1446
- https://doi.org//10.1364/josaa.5.000871
- https://doi.org//10.1523/jneurosci.09-05-01731.1989
- https://doi.org//10.1126/science.6539501
- https://doi.org//10.1016/s0896-6273(00)81037-5
- https://doi.org//10.1098/rspb.2002.1985
- https://doi.org//10.1098/rspb.2015.1182
- https://doi.org//10.1016/s0042-6989(00)00069-9
- https://doi.org//10.1113/jphysiol.1978.sp012272
Usage metrics
Read the peer-reviewed publication
Categories
- Radiology and Organ Imaging
- Decision Making
- Clinical Nursing: Tertiary (Rehabilitative)
- Image Processing
- Autonomic Nervous System
- Cellular Nervous System
- Biological Engineering
- Sensory Systems
- Central Nervous System
- Neuroscience
- Endocrinology
- Artificial Intelligence and Image Processing
- Signal Processing
- Rehabilitation Engineering
- Biomedical Engineering not elsewhere classified
- Stem Cells
- Neurogenetics
- Developmental Biology