Video_5_Chemomechanical Simulation of Microtubule Dynamics With Explicit Lateral Bond Dynamics.MP4
We introduce and parameterize a chemomechanical model of microtubule dynamics on the dimer level, which is based on the allosteric tubulin model and includes attachment, detachment and hydrolysis of tubulin dimers as well as stretching of lateral bonds, bending at longitudinal junctions, and the possibility of lateral bond rupture and formation. The model is computationally efficient such that we reach sufficiently long simulation times to observe repeated catastrophe and rescue events at realistic tubulin concentrations and hydrolysis rates, which allows us to deduce catastrophe and rescue rates. The chemomechanical model also allows us to gain insight into microscopic features of the GTP-tubulin cap structure and microscopic structural features triggering microtubule catastrophes and rescues. Dilution simulations show qualitative agreement with experiments. We also explore the consequences of a possible feedback of mechanical forces onto the hydrolysis process and the GTP-tubulin cap structure.
History
References
- https://doi.org//10.1146/annurev.cellbio.18.032002.132412
- https://doi.org//10.1101/gad.1511207
- https://doi.org//10.1038/312237a0
- https://doi.org//10.1073/pnas.81.3.771
- https://doi.org//10.1083/jcb.114.1.73
- https://doi.org//10.1038/nrm2713
- https://doi.org//10.1002/bies.201800194
- https://doi.org//10.1083/jcb.114.5.977
- https://doi.org//10.1242/jcs.067611
- https://doi.org//10.1073/pnas.95.7.3661
- https://doi.org//10.1016/S0955-0674(98)80082-3
- https://doi.org//10.1016/j.sbi.2006.03.005
- https://doi.org//10.1016/S0092-8674(00)80961-7
- https://doi.org//10.1529/biophysj.104.051789
- https://doi.org//10.1529/biophysj.105.060913
- https://doi.org//10.1016/j.cub.2013.05.059
- https://doi.org//10.1088/1478-3975/11/4/046001
- https://doi.org//10.1016/j.bpj.2015.10.048
- https://doi.org//10.1371/journal.pcbi.1004099
- https://doi.org//10.1021/bi060334m
- https://doi.org//10.1073/pnas.0801155105
- https://doi.org//10.1016/j.cell.2014.03.053
- https://doi.org//10.1038/s41594-018-0087-8
- https://doi.org//10.1371/journal.pcbi.1004313
- https://doi.org//10.1371/journal.pcbi.1007327
- https://doi.org//10.1083/jcb.201802138
- https://doi.org//10.7554/eLife.34353.041
- https://doi.org//10.3367/UFNe.2016.04.037779
- https://doi.org//10.1103/PhysRevLett.70.1347
- https://doi.org//10.1073/pnas.092504999
- https://doi.org//10.1371/journal.pone.0006378
- https://doi.org//10.1103/PhysRevE.83.041905
- https://doi.org//10.1091/mbc.e11-08-0688
- https://doi.org//10.1039/C3SM52892H
- https://doi.org//10.1101/2019.12.16.878603
- https://doi.org//10.1038/nature03606
- https://doi.org//10.1073/pnas.0406393101
- https://doi.org//10.1103/PhysRevE.97.062408
- https://doi.org//10.1016/j.cub.2007.08.063
- https://doi.org//10.1103/PhysRevE.55.3092
- https://doi.org//10.1371/journal.pone.0247022
- https://doi.org//10.1016/j.cell.2011.06.053
- https://doi.org//10.1021/ja506385p
- https://doi.org//10.1126/science.347575
- https://doi.org//10.1016/S0006-3495(97)78802-7
- https://doi.org//10.1016/0021-9991(76)90041-3
- https://doi.org//10.1083/jcb.107.4.1437
- https://doi.org//10.1021/bi00480a014
- https://doi.org//10.1091/mbc.3.10.1141
- https://doi.org//10.1091/mbc.4.3.323
- https://doi.org//10.1083/jcb.129.5.1311
- https://doi.org//10.1016/S0006-3495(02)73946-5
- https://doi.org//10.7554/eLife.03069.014
- https://doi.org//10.1073/pnas.1815823116
- https://doi.org//10.1063/1.1759316
- https://doi.org//10.1007/s12195-013-0302-y
- https://doi.org//10.7554/eLife.28433.023
- https://doi.org//10.1007/s10853-007-1784-6
- https://doi.org//10.1016/j.str.2010.12.020
- https://doi.org//10.1021/bi961325o
- https://doi.org//10.1038/srep45747
- https://doi.org//10.1016/j.bpj.2011.12.059
- https://doi.org//10.1002/bies.201200131
- https://doi.org//10.1091/mbc.e16-03-0199
- https://doi.org//10.1083/jcb.200301147
- https://doi.org//10.1016/j.cell.2011.10.037
- https://doi.org//10.1103/PhysRevE.54.5538
- https://doi.org//10.1103/PhysRevE.87.012703
- https://doi.org//10.1209/0295-5075/89/38010
- https://doi.org//10.1016/j.cub.2012.06.068
- https://doi.org//10.1002/cm.970180106
- https://doi.org//10.7554/eLife.13470.023
- https://doi.org//10.1016/j.jmb.2013.03.029
- https://doi.org//10.1242/jcs.072967
- https://doi.org//10.1083/jcb.201009037
- https://doi.org//10.1016/j.jmb.2011.07.029
- https://doi.org//10.1073/pnas.1204129109
- https://doi.org//10.1038/nrm2369
- https://doi.org//10.1126/science.278.5339.856
- https://doi.org//10.1016/j.ceb.2004.12.011
- https://doi.org//10.1007/s002490050245
- https://doi.org//10.1016/S0006-3495(01)76002-X
- https://doi.org//10.1016/j.bpj.2008.12.3920
- https://doi.org//10.1209/0295-5075/93/28006
Usage metrics
Read the peer-reviewed publication
Categories
- Biophysics
- Classical Physics not elsewhere classified
- Condensed Matter Physics not elsewhere classified
- Quantum Physics not elsewhere classified
- Solar System, Solar Physics, Planets and Exoplanets
- Mathematical Physics not elsewhere classified
- Classical and Physical Optics
- Astrophysics
- Photonics, Optoelectronics and Optical Communications
- Physical Chemistry of Materials
- Cloud Physics
- Tropospheric and Stratospheric Physics
- Physical Chemistry not elsewhere classified
- Applied Physics
- Computational Physics
- Condensed Matter Physics
- Particle Physics
- Plasma Physics
- High Energy Astrophysics; Cosmic Rays
- Mesospheric, Ionospheric and Magnetospheric Physics
- Space and Solar Physics