Video_2_Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization.AVI
Critical size bone defects are regularly treated by auto- and allograft transplantation. However, such treatments require to harvest bone from patient donor sites, with often limited tissue availability or risk of donor site morbidity. Not requiring bone donation, three-dimensionally (3D) printed implants and biomaterial-based tissue engineering (TE) strategies promise to be the next generation therapies for bone regeneration. We present here polylactic acid (PLA)-bioactive glass (BG) composite scaffolds manufactured by fused deposition modeling (FDM), involving the fabrication of PLA-BG composite filaments which are used to 3D print controlled open-porous and osteoinductive scaffolds. We demonstrated the printability of PLA-BG filaments as well as the bioactivity and cytocompatibility of PLA-BG scaffolds using pre-osteoblast MC3T3E1 cells. Gene expression analyses indicated the beneficial impact of BG inclusions in FDM scaffolds regarding osteoinduction, as BG inclusions lead to increased osteogenic differentiation of human adipose-derived stem cells in comparison to pristine PLA. Our findings confirm that FDM is a convenient additive manufacturing technology to develop PLA-BG composite scaffolds suitable for bone tissue engineering.
History
References
- https://doi.org//10.1016/0021-9290(88)90167-4
- https://doi.org//10.1080/14712598.2017.1315403
- https://doi.org//10.1016/j.bioactmat.2017.06.001
- https://doi.org//10.1159/000447494
- https://doi.org//10.1109/TNB.2019.2905469
- https://doi.org//10.1016/j.compscitech.2010.06.002
- https://doi.org//10.1016/S0266-3538(03)00275-6
- https://doi.org//10.1016/S0928-4931(02)00129-7
- https://doi.org//10.1016/S1359-6462(99)00250-X
- https://doi.org//10.1016/j.mattod.2013.11.017
- https://doi.org//10.1002/jbm.b.33378
- https://doi.org//10.3390/polym6082232
- https://doi.org//10.1002/jbm.820221104
- https://doi.org//10.1038/nm1295-1322
- https://doi.org//10.22203/eCM.v024a01
- https://doi.org//10.1007/s10856-007-3297-x
- https://doi.org//10.1186/s13287-018-0850-0
- https://doi.org//10.1108/13552541211272045
- https://doi.org//10.1021/acsami.8b08563
- https://doi.org//10.1016/j.jeurceramsoc.2013.08.003
- https://doi.org//10.1016/j.jnoncrysol.2015.02.025
- https://doi.org//10.1016/j.matlet.2015.10.073
- https://doi.org//10.5923/j.cmaterials.20170705.03
- https://doi.org//10.1038/s41598-017-12935-x
- https://doi.org//10.1016/j.msec.2011.04.022
- https://doi.org//10.1615/CritRevTherDrugCarrierSyst.v29.i1.10
- https://doi.org//10.3390/ma3073867
- https://doi.org//10.1002/9783527674220.ch1
- https://doi.org//10.1007/s10856-006-0432-z
- https://doi.org//10.3389/fbioe.2015.00194
- https://doi.org//10.1002/jbm.820050611
- https://doi.org//10.1046/j.1440-1622.1999.01674.x
- https://doi.org//10.1016/S0142-9612(02)00148-5
- https://doi.org//10.1016/S0142-9612(00)00121-6
- https://doi.org//10.1016/j.tibtech.2004.05.005
- https://doi.org//10.3109/17453678308992915
- https://doi.org//10.3389/fcell.2019.00268
- https://doi.org//10.1016/j.msec.2012.07.038
- https://doi.org//10.1016/j.biomaterials.2005.08.016
- https://doi.org//10.1016/j.biomaterials.2006.01.017
- https://doi.org//10.1016/j.procir.2017.04.022
- https://doi.org//10.1126/science.8493529
- https://doi.org//10.3390/ma11101832
- https://doi.org//10.1016/j.proeng.2013.05.093
- https://doi.org//10.1201/9780429154065
- https://doi.org//10.1007/s11051-011-0712-5
- https://doi.org//10.1016/j.ijom.2009.01.001
- https://doi.org//10.25141/2471-657X-2015-1.0001
- https://doi.org//10.3390/pharmaceutics10030130
- https://doi.org//10.1097/BOT.0000000000001115
- https://doi.org//10.1115/1.4029176
- https://doi.org//10.1088/1478-3975/12/4/045006
- https://doi.org//10.1002/btpr.246
- https://doi.org//10.1023/A:1018570213546
- https://doi.org//10.1016/0021-9290(93)90042-D
- https://doi.org//10.1016/0021-9290(91)90006-9
- https://doi.org//10.3390/ma7031957
- https://doi.org//10.1016/j.msec.2018.12.046
- https://doi.org//10.1002/jbm.a.31237
- https://doi.org//10.1002/mabi.200400026
- https://doi.org//10.1097/BOT.0000000000000978
- https://doi.org//10.1016/j.actbio.2012.10.041
- https://doi.org//10.1155/2014/420616
- https://doi.org//10.1002/jbm.a.31329
- https://doi.org//10.1155/2019/3673857
- https://doi.org//10.1002/jbm.a.30039
- https://doi.org//10.3390/jfb9010017
- https://doi.org//10.1007/s00441-011-1306-3
- https://doi.org//10.1016/j.jmbbm.2019.103608
- https://doi.org//10.1007/s002230001134
- https://doi.org//10.1016/S0142-9612(01)00400-8
- https://doi.org//10.1155/2019/1351860
- https://doi.org//10.1371/journal.pone.0214488
- https://doi.org//10.1063/1.4945555
- https://doi.org//10.1186/s13287-019-1277-y
- https://doi.org//10.1111/cpr.12218
Usage metrics
Read the peer-reviewed publication
Categories
- Bioprocessing, Bioproduction and Bioproducts
- Industrial Biotechnology Diagnostics (incl. Biosensors)
- Industrial Microbiology (incl. Biofeedstocks)
- Industrial Molecular Engineering of Nucleic Acids and Proteins
- Industrial Biotechnology not elsewhere classified
- Medical Biotechnology Diagnostics (incl. Biosensors)
- Biological Engineering
- Regenerative Medicine (incl. Stem Cells and Tissue Engineering)
- Medical Biotechnology not elsewhere classified
- Agricultural Marine Biotechnology
- Biomaterials
- Biomechanical Engineering
- Biotechnology
- Biomarkers
- Biomedical Engineering not elsewhere classified
- Genetic Engineering
- Synthetic Biology
- Bioremediation
- Medical Molecular Engineering of Nucleic Acids and Proteins