Video5_Förster Resonance Energy Transfer-Based Single-Cell Imaging Reveals Piezo1-Induced Ca2+ Flux Mediates Membrane Ruffling and Cell Survival.MP4
A mechanosensitive ion channel, Piezo1 induces non-selective cation flux in response to various mechanical stresses. However, the biological interpretation and underlying mechanisms of cells resulting from Piezo1 activation remain elusive. This study elucidates Piezo1-mediated Ca2+ influx driven by channel activation and cellular behavior using novel Förster Resonance Energy Transfer (FRET)-based biosensors and single-cell imaging analysis. Results reveal that extracellular Ca2+ influx via Piezo1 requires intact caveolin, cholesterol, and cytoskeletal support. Increased cytoplasmic Ca2+ levels enhance PKA, ERK, Rac1, and ROCK activity, which have the potential to promote cancer cell survival and migration. Furthermore, we demonstrate that Piezo1-mediated Ca2+ influx upregulates membrane ruffling, a characteristic feature of cancer cell metastasis, using spatiotemporal image correlation spectroscopy. Thus, our findings provide new insights into the function of Piezo1, suggesting that Piezo1 plays a significant role in the behavior of cancer cells.
History
References
- https://doi.org//10.1016/bs.ctm.2017.01.001
- https://doi.org//10.1002/cm.20296
- https://doi.org//10.7150/ijbs.3.303
- https://doi.org//10.1182/blood-2013-02-482489
- https://doi.org//10.1073/pnas.1313364111
- https://doi.org//10.1074/jbc.m103274200
- https://doi.org//10.1073/pnas.0503465103
- https://doi.org//10.1038/s41467-019-12501-1
- https://doi.org//10.1016/s0021-9258%2819%2986107-0
- https://doi.org//10.1128/mcb.16.9.4888
- https://doi.org//10.7554/eLife.07370
- https://doi.org//10.1152/jn.00502.2020
- https://doi.org//10.1016/j.bpj.2021.02.003
- https://doi.org//10.1016/j.tcb.2007.02.002
- https://doi.org//10.1128/MCB.25.11.4602-4614.2005
- https://doi.org//10.1126/science.1193270
- https://doi.org//10.1038/nature10812
- https://doi.org//10.1038/ncomms10366
- https://doi.org//10.1016/bs.ctm.2016.09.001
- https://doi.org//10.1038/s41598-019-51518-w
- https://doi.org//10.1016/j.bbrc.2018.02.058
- https://doi.org//10.1016/j.neuron.2017.03.039
- https://doi.org//10.1038/35093011
- https://doi.org//10.1083/jcb.120.4.923
- https://doi.org//10.1038/nature21407
- https://doi.org//10.7554/eLife.14850
- https://doi.org//10.1111/j.1600-0854.2009.01023.x
- https://doi.org//10.1529/biophysj.104.054874
- https://doi.org//10.1074/jbc.M211785200
- https://doi.org//10.1242/jcs.176768
- https://doi.org//10.1038/nature22981
- https://doi.org//10.1074/jbc.M312543200
- https://doi.org//10.1097/00007890-199905150-00011
- https://doi.org//10.1074/jbc.M304909200
- https://doi.org//10.1016/j.snb.2017.03.083
- https://doi.org//10.7554/eLife.04876
- https://doi.org//10.1002/advs.201801290
- https://doi.org//10.1091/mbc.E11-01-0072
- https://doi.org//10.1038/s41598-018-27174-x
- https://doi.org//10.1038/nrm3861
- https://doi.org//10.1146/annurev.micro.112408.134106
- https://doi.org//10.1007/978-90-481-8622-8_19
- https://doi.org//10.7554/eLife.12088
- https://doi.org//10.1247/csf.16016
- https://doi.org//10.1016/j.cub.2013.03.065
- https://doi.org//10.1161/hypertensionaha.120.16629
- https://doi.org//10.1038/s41586-019-1499-2
- https://doi.org//10.1038/s41598-017-00331-4
- https://doi.org//10.1038/ncomms9329
- https://doi.org//10.1146/annurev.bb.24.060195.000423
- https://doi.org//10.1038/nrm.2015.14
- https://doi.org//10.1242/jcs.056424
- https://doi.org//10.1006/abbi.1996.0540
- https://doi.org//10.1016/j.jbior.2014.10.003
- https://doi.org//10.1038/nrc.2017.18
- https://doi.org//10.1016/j.cellbi.2007.01.024
- https://doi.org//10.7554/eLife.20813
- https://doi.org//10.1006/excr.1997.3925
- https://doi.org//10.1038/nrm4012
- https://doi.org//10.1073/pnas.1817070115
- https://doi.org//10.1016/j.ceb.2017.06.006
- https://doi.org//10.1016/j.ceca.2009.02.009
- https://doi.org//10.1016/j.cell.2004.09.003
- https://doi.org//10.1016/j.neuron.2014.07.023
- https://doi.org//10.1098/rstb.2013.0097
- https://doi.org//10.1038/nrc3105
- https://doi.org//10.1073/pnas.1409233111
- https://doi.org//10.1083/jcb.200211012
- https://doi.org//10.1016/0092-8674%2892%2990164-8
- https://doi.org//10.1126/science.1092053
- https://doi.org//10.1085/jgp.201912515
- https://doi.org//10.1038/nrc2374
- https://doi.org//10.1083/jcb.123.6.1811
- https://doi.org//10.1038/s41467-019-09055-7
- https://doi.org//10.1016/s0021-9258%2818%2947638-7
- https://doi.org//10.1016/j.tcb.2012.07.001
- https://doi.org//10.1016/j.brainres.2006.06.050
- https://doi.org//10.1007/s00418-009-0651-8
- https://doi.org//10.1074/jbc.M204787200
- https://doi.org//10.1083/jcb.200402136
- https://doi.org//10.1016/j.ceb.2020.04.001
- https://doi.org//10.1016/j.bbamem.2014.08.016
- https://doi.org//10.1074/jbc.M512885200
- https://doi.org//10.7554/eLife.47454
- https://doi.org//10.7554/eLife.07369
- https://doi.org//10.1016/j.celrep.2016.10.033
- https://doi.org//10.1113/jphysiol.2014.281881
- https://doi.org//10.2174/156800907780618329
- https://doi.org//10.1016/j.ceca.2016.10.005
- https://doi.org//10.1152/ajpheart.00824.2007
- https://doi.org//10.1016/j.bbrep.2018.11.011
- https://doi.org//10.1172/jci87343
- https://doi.org//10.1038/s41467-018-03570-9
- https://doi.org//10.1038/sj.onc.1204783
- https://doi.org//10.1083/jcb.120.6.1417
- https://doi.org//10.1016/j.celrep.2018.09.075
- https://doi.org//10.1074/jbc.M501625200
- https://doi.org//10.1038/ncb2320
- https://doi.org//10.1152/ajpregu.90602.2008
- https://doi.org//10.1182/blood-2012-04-422253
- https://doi.org//10.1186/s40164-020-00191-1
- https://doi.org//10.1038/nature25743
- https://doi.org//10.1126/science.1208592
- https://doi.org//10.1006/excr.2000.4937