image6_Fault Pattern and Seismotectonic Style of the Campania – Lucania 1980 Earthquake (Mw 6.9, Southern Italy): New Multidisciplinary Constraints.pdf
New fault trace mapping and structural survey of the active faults outcropping within the epicentral area of the Campania-Lucania 1980 normal fault earthquake (Mw 6.9) are integrated with a revision of pre-existing earthquake data and with an updated interpretation of the CROP-04 near-vertical seismic profile to reconstruct the surface and depth geometry, the kinematics and stress tensor of the seismogenic fault pattern. Three main fault alignments, organized in high-angle en-echelon segments of several kilometers in length, are identified and characterized. The inner and intermediate ones, i.e. Inner Irpinia (InIF) and Irpinia Faults (IF), dip eastward; the outer Antithetic Fault (AFA) dips westward. Both the InIF and the IF strike NW-SE along the northern and central segments and rotate to W-E along the southern segments for at least 16 km. We provide evidence of surface coseismic faulting (up to 1 m) not recognized before along the E-W segments and document coseismic ruptures with maximum vertical displacement up to ∼1 m where already surveyed from other investigators 40 years ago. Fault/slip data from surface data and a new compilation of focal mechanisms (1980 – 2018) were used for strain and stress analyses to show a coherent NNE-directed least principal stress over time and at different crustal depths, with a crustal-scale deviation from the classic SW-NE tensional direction across the Apennines of Italy. The continuation at depth of the outcropping faults is analyzed along the trace of the CROP-04 profile and with available hypocentral distributions. Integrating all information, a 3D seismotectonic model, extrapolated to the base of the seismogenic layer, is built. It outlines a graben-like structure with a southern E-W bend developed at depth shallower than 10–12 km, at the hanging wall of an extensional NE- to E-dipping extensional basal detachment. In our interpretation, such a configuration implies a control in the stress transfer during the 1980 earthquake ruptures and provides a new interpretation of the second sub-event, occurred at 20 s. Our reconstruction suggests that the latter ruptured a hanging wall NNE-dipping splay of the E-W striking main fault segment and possibly also an antithetic SSW-dipping splay, in two in-sequence episodes.
History
References
- https://doi.org//10.1111/j.1365-3121.2008.00841.x
- https://doi.org//10.1002/2014GL060070
- https://doi.org//10.1002/2016GL072346
- https://doi.org//10.1111/j.1365-246X.2005.02652.x
- https://doi.org//10.4401/ag-4984
- https://doi.org//10.2113/gssgfbull.S7-XIX.6.1309
- https://doi.org//10.1016/S1040-6182(02)00127-1
- https://doi.org//10.1130/B30814.1
- https://doi.org//10.1016/j.tecto.2007.04.014
- https://doi.org//10.1029/jb094ib02p01631
- https://doi.org//10.1785/0120150175
- https://doi.org//10.1029/2000tc900023
- https://doi.org//10.1023/b:jose.0000038449.78801.05
- https://doi.org//10.1130/GSAT01711A.1
- https://doi.org//10.1080/09500691003660364
- https://doi.org//10.1016/j.tecto.2008.12.007
- https://doi.org//10.1016/j.tecto.2008.09.023
- https://doi.org//10.1016/j.jsg.2016.10.005
- https://doi.org//10.3301/IJG.2017.11
- https://doi.org//10.1029/2018TC005305
- https://doi.org//10.3390/geosciences10050186
- https://doi.org//10.1029/2010TC002794
- https://doi.org//10.1016/0031-9201(83)90031-6
- https://doi.org//10.1093/gji/ggt024
- https://doi.org//10.1002/2017JB014453
- https://doi.org//10.1016/S0264-3707(03)00037-1
- https://doi.org//10.1016/j.tecto.2014.10.016
- https://doi.org//10.1111/ter.12233
- https://doi.org//10.1007/s11069-015-1831-6
- https://doi.org//10.4401/ag-4283
- https://doi.org//10.1080/17445647.2018.1441756
- https://doi.org//10.1046/j.1365-246X.2003.02031.x
- https://doi.org//10.1093/gji/ggv397
- https://doi.org//10.1785/0120110225
- https://doi.org//10.1029/2007TC002230
- https://doi.org//10.1144/gsl.sp.2003.212.01.06
- https://doi.org//10.1016/0012-821X(83)90092-4
- https://doi.org//10.1016/j.epsl.2011.09.034
- https://doi.org//10.1016/j.epsl.2008.09.018
- https://doi.org//10.1016/j.geomorph.2013.07.003
- https://doi.org//10.1002/2014GL059230
- https://doi.org//10.1016/0031-9201(87)90067-7
- https://doi.org//10.1016/j.epsl.2012.01.028
- https://doi.org//10.1016/j.tecto.2014.02.007
- https://doi.org//10.1007/s00024-014-0931-7
- https://doi.org//10.1016/j.jsg.2016.11.006
- https://doi.org//10.1007/s00531-005-0066-2
- https://doi.org//10.1016/j.earscirev.2014.05.013
- https://doi.org//10.3390/geosciences10080286
- https://doi.org//10.1016/0040-1951(85)90236-7
- https://doi.org//10.1016/0031-9201(87)90067-7
- https://doi.org//10.1016/j.tecto.2018.07.007
- https://doi.org//10.1155/2012/617481
- https://doi.org//10.1007/s10518-009-9131-8
- https://doi.org//10.1016/S0040-1951(99)00267-X
- https://doi.org//10.1029/2010JB000871
- https://doi.org//10.1002/2013JB010890
- https://doi.org//10.1016/0012-821X(82)90158-3
- https://doi.org//10.1016/0031-9201(82)90112-1
- https://doi.org//10.1016/j.soildyn.2009.01.007
- https://doi.org//10.1016/0040-1951(88)90190-4
- https://doi.org//10.1130/0016
- https://doi.org//10.1002/2016GL071723
- https://doi.org//10.1111/ter.12251
- https://doi.org//10.1007/978-94-024-2046-3
- https://doi.org//10.4401/ag-7197
- https://doi.org//10.13127/DBMI/DBMI15.2
- https://doi.org//10.1029/2004JB003174
- https://doi.org//10.1111/j.1365-246X.2005.02597.x
- https://doi.org//10.1029/2011TC002890
- https://doi.org//10.1093/gji/ggw100
- https://doi.org//10.1029/jb095ib10p15319
- https://doi.org//10.4401/ag-4299
- https://doi.org//10.1016/j.jsg.2006.07.009
- https://doi.org//10.1007/s10950-008-9119-x
- https://doi.org//10.1016/j.jog.2011.02.006
- https://doi.org//10.4401/ag-4296
- https://doi.org//10.1029/92GL02823
- https://doi.org//10.1016/j.pepi.2006.07.008
- https://doi.org//10.1023/A:1021278811749
- https://doi.org//10.1016/j.jsg.2019.103938
- https://doi.org//10.1002/2017TC004915
- https://doi.org//10.13127/CPTI/CPTI15.2
- https://doi.org//10.1130/GES01197.1
- https://doi.org//10.13127/TDMT
- https://doi.org//10.1029/2004TC001634
- https://doi.org//10.1007/978-3-540-69426-7
- https://doi.org//10.1016/j.epsl.2013.03.024
- https://doi.org//10.1016/j.jsg.2019.103934
- https://doi.org//10.1144/GSL.SP.2003.212.01.07
- https://doi.org//10.1038/srep00410
- https://doi.org//10.1130/G24065A.1
- https://doi.org//10.1016/j.tecto.2010.06.001
- https://doi.org//10.1046/j.1365-246x.1998.00610.x
- https://doi.org//10.1111/j.1365-246x.1990.tb05575.x
- https://doi.org//10.1023/A:1011463223440
- https://doi.org//10.1002/2015JB012410
- https://doi.org//10.1029/2018TC005175
- https://doi.org//10.1038/s41598-017-04917-w10.1038/s41598-017-04917-w
Usage metrics
Read the peer-reviewed publication
Categories
- Solid Earth Sciences
- Climate Science
- Evolutionary Impacts of Climate Change
- Atmospheric Sciences not elsewhere classified
- Exploration Geochemistry
- Inorganic Geochemistry
- Isotope Geochemistry
- Organic Geochemistry
- Geochemistry not elsewhere classified
- Igneous and Metamorphic Petrology
- Ore Deposit Petrology
- Palaeontology (incl. Palynology)
- Structural Geology
- Tectonics
- Volcanology
- Geology not elsewhere classified
- Seismology and Seismic Exploration
- Glaciology
- Hydrogeology
- Natural Hazards
- Quaternary Environments
- Earth Sciences not elsewhere classified