Image_5_Using Mobile EEG to Investigate Alpha and Beta Asymmetries During Hand and Foot Use.jpeg
The Edinburgh Handedness Inventory (EHI) and the Waterloo Footedness Questionnaire (WFQ) are two of the most widely used questionnaires to assess lateralized everyday behavior in human participants. However, it is unclear to what extent the specific behavior assessed in these questionnaires elicit lateralized neural activity when performed in real-life situations. To illuminate this unresolved issue, we assessed EEG alpha and beta asymmetries during real-life performance of the behaviors assessed in the EHI and WFQ using a mobile EEG system. This methodology provides high ecological validity for studying neural correlates of motor behavior under more naturalistic conditions. Our results indicate that behavioral performance of items of both the EHI and WFQ differentiate between left- and right-handers and left- and right-footers on the neural level, especially in the alpha frequency band. These results were unaffected by movement parameters. Furthermore, we could demonstrate that neural activity elicited specifically during left-sided task performance provides predictive power for the EHI or WFQ score of the participants. Overall, our results show that these prominent questionnaires not only distinguish between different motor preferences on the behavioral level, but also on the neurophysiological level. Furthermore, we could show that mobile EEG systems are a powerful tool to investigate motor asymmetries in ecologically valid situations outside of the laboratory setting. Future research should focus on other lateralized behavioral phenotypes in real-life settings to provide more insights into lateralized motor functions.
History
Usage metrics
Categories
- Radiology and Organ Imaging
- Decision Making
- Clinical Nursing: Tertiary (Rehabilitative)
- Image Processing
- Autonomic Nervous System
- Cellular Nervous System
- Biological Engineering
- Sensory Systems
- Central Nervous System
- Neuroscience
- Endocrinology
- Artificial Intelligence and Image Processing
- Signal Processing
- Rehabilitation Engineering
- Biomedical Engineering not elsewhere classified
- Stem Cells
- Neurogenetics
- Developmental Biology