Image_4_Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function.JPEG
The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs) propagate back into the dendritic tree and activate voltage gated Ca2+ channels (VGCCs). For spines, this global mode of spine Ca2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs) result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T- and R-type VGCCs were the dominant depolarization-associated Ca2+conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs) measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca2+ influx, the amount of EPSP mediated Ca2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.
History
References
- https://doi.org//10.1523/ENEURO.0050-15.2016
- https://doi.org//10.1146/annurev.neuro.30.051606.094222
- https://doi.org//10.3389/fnana.2014.00141
- https://doi.org//10.1016/j.neuron.2010.12.009
- https://doi.org//10.1371/journal.pbio.1000190
- https://doi.org//10.1016/j.neuron.2006.12.017
- https://doi.org//10.1016/j.neuron.2014.12.051
- https://doi.org//10.1016/j.celrep.2017.02.047
- https://doi.org//10.1152/jn.1991.65.2.371
- https://doi.org//10.1152/jn.01089.2006
- https://doi.org//10.1523/JNEUROSCI.4305-09.2010
- https://doi.org//10.1152/jn.2000.84.5.2225
- https://doi.org//10.1371/journal.pone.0020939
- https://doi.org//10.1152/jn.1997.77.3.1639
- https://doi.org//10.1038/nature11554
- https://doi.org//10.1146/annurev.ne.17.030194.002013
- https://doi.org//10.1152/jn.01169.2007
- https://doi.org//10.1038/nn.3496
- https://doi.org//10.1371/journal.pone.0026501
- https://doi.org//10.1016/j.neuron.2008.08.020
- https://doi.org//10.1038/nn.3137
- https://doi.org//10.1016/j.neuron.2005.01.003
- https://doi.org//10.1038/nn.3461
- https://doi.org//10.1523/JNEUROSCI.2672-09.2009
- https://doi.org//10.1371/journal.pbio.1002181
- https://doi.org//10.1523/JNEUROSCI.3062-05.2006
- https://doi.org//10.1016/s0022-5193(85)80225-3
- https://doi.org//10.1152/physrev.00010.2015
- https://doi.org//10.1073/pnas.0605412104
- https://doi.org//10.1155/2008/814815
- https://doi.org//10.1152/jn.1995.74.3.1335
- https://doi.org//10.1126/science.7716525
- https://doi.org//10.1038/20187
- https://doi.org//10.1016/j.neuron.2004.09.012
- https://doi.org//10.1038/nn736
- https://doi.org//10.1101/pdb.prot5620
- https://doi.org//10.1016/0006-8993(85)90333-6
- https://doi.org//10.1523/JNEUROSCI.3332-03.2004
- https://doi.org//10.1523/JNEUROSCI.5847-08.2009
- https://doi.org//10.1016/s0006-3495(03)74757-2
- https://doi.org//10.1016/j.cell.2012.06.029
- https://doi.org//10.1038/ncomms9436
- https://doi.org//10.1523/JNEUROSCI.15-04-02995.1995
- https://doi.org//10.1038/nn.2809
- https://doi.org//10.1113/jphysiol.2009.179382
- https://doi.org//10.1016/j.nlm.2016.06.007
- https://doi.org//10.1152/jn.1988.60.2.499
- https://doi.org//10.1152/jn.00590.2013
- https://doi.org//10.1016/S0896-6273(00)80698-4
- https://doi.org//10.1038/ncomms10289
- https://doi.org//10.1016/j.tips.2008.11.005
- https://doi.org//10.1007/s004240050286
- https://doi.org//10.1371/journal.pone.0139332
- https://doi.org//10.1016/j.neuron.2013.11.004
- https://doi.org//10.1016/j.pbiomolbio.2004.06.009
- https://doi.org//10.1016/s0896-6273(00)81202-7
- https://doi.org//10.1016/j.celrep.2012.03.007
- https://doi.org//10.1126/stke.2192004pl5
- https://doi.org//10.1016/j.neuron.2008.10.054