Image_3_Metabolic and Immune Markers for Precise Monitoring of COVID-19 Severity and Treatment.pdf
Deep understanding of the SARS-CoV-2 effects on host molecular pathways is paramount for the discovery of early biomarkers of outcome of coronavirus disease 2019 (COVID-19) and the identification of novel therapeutic targets. In that light, we generated metabolomic data from COVID-19 patient blood using high-throughput targeted nuclear magnetic resonance (NMR) spectroscopy and high-dimensional flow cytometry. We find considerable changes in serum metabolome composition of COVID-19 patients associated with disease severity, and response to tocilizumab treatment. We built a clinically annotated, biologically-interpretable space for precise time-resolved disease monitoring and characterize the temporal dynamics of metabolomic change along the clinical course of COVID-19 patients and in response to therapy. Finally, we leverage joint immuno-metabolic measurements to provide a novel approach for patient stratification and early prediction of severe disease. Our results show that high-dimensional metabolomic and joint immune-metabolic readouts provide rich information content for elucidation of the host’s response to infection and empower discovery of novel metabolic-driven therapies, as well as precise and efficient clinical action.
History
References
- https://doi.org//10.1016/S2213-2600%2820%2930366-0
- https://doi.org//10.1016/j.ijid.2020.03.017
- https://doi.org//10.1016/S0140-6736%2820%2930566-3
- https://doi.org//10.1016/S2213-2600%2820%2930370-2
- https://doi.org//10.1056/NEJMoa2002032
- https://doi.org//10.1016/S0140-6736%2820%2930183-5
- https://doi.org//10.1002/jmv.26003
- https://doi.org//10.1001/jama.2020.6775
- https://doi.org//10.1101/2020.03.12.20034736
- https://doi.org//10.1038/s41423-020-0447-2
- https://doi.org//10.1093/ofid/ofaa153
- https://doi.org//10.1101/2020.05.09.086249
- https://doi.org//10.1038/s41577-020-0311-8
- https://doi.org//10.2147/tcrm.s3470
- https://doi.org//10.1016/S2665-9913%2820%2930173-9
- https://doi.org//10.1101/2020.08.15.20175638
- https://doi.org//10.1038/s41591-020-0944-y
- https://doi.org//10.1038/s41418-020-0572-6
- https://doi.org//10.1038/s41392-020-0148-4
- https://doi.org//10.1016/j.jinf.2020.03.037
- https://doi.org//10.1161/CIRCULATIONAHA.120.048488
- https://doi.org//10.1038/s41586-020-2700-3
- https://doi.org//10.1038/s41586-020-2588-y
- https://doi.org//10.1101/2020.11.09.20228221
- https://doi.org//10.1038/s41598-020-73966-5
- https://doi.org//10.15252/emmm.202114167
- https://doi.org//10.1371/journal.ppat.1009243
- https://doi.org//10.1038/s41419-021-03540-y
- https://doi.org//10.1128/MMBR.67.2.226-237.2003
- https://doi.org//10.1111/cmi.12340
- https://doi.org//10.1016/j.bbalip.2017.07.006
- https://doi.org//10.1016/j.cmet.2020.06.016
- https://doi.org//10.1038/s41392-020-00292-7
- https://doi.org//10.1007/s00125-019-05001-w
- https://doi.org//10.1101/2020.07.24.20158675
- https://doi.org//10.1101/2020.07.02.20143685
- https://doi.org//10.7554/eLife.63033
- https://doi.org//10.1001/jama.1994.03520130074036
- https://doi.org//10.1146/annurev.pharmtox.48.113006.094615
- https://doi.org//10.1258/acb.2009.200903
- https://doi.org//10.1016/j.cels.2015.09.007
- https://doi.org//10.1371/journal.pmed.1001779
- https://doi.org//10.1038/s41598-021-86747-5
- https://doi.org//10.1200/JCO.2011.36.4109
- https://doi.org//10.1016/s0753-3322%2802%2900253-6
- https://doi.org//10.1016/j.jnutbio.2015.11.002
- https://doi.org//10.1016/j.smim.2016.10.009
- https://doi.org//10.1016/s1097-2765%2800%2900066-6
- https://doi.org//10.1016/0014-4827%2873%2990561-2
- https://doi.org//10.1016/s1074-7613%2802%2900323-0
- https://doi.org//10.1097/00041433-199405030-00008
- https://doi.org//10.1016/0899-9007%2896%2990013-1
- https://doi.org//10.26508/lsa.202000955
- https://doi.org//10.1038/s41586-021-03475-6
- https://doi.org//10.1371/journal.pone.0011869
- https://doi.org//10.1016/s0002-9149%2802%2902635-8
- https://doi.org//10.1093/eurheartj/ehz962
- https://doi.org//10.1093/cvr/cvx226
- https://doi.org//10.1056/NEJMoa2015432
- https://doi.org//10.1126/scitranslmed.abd3876
- https://doi.org//10.1194/jlr.R300019-JLR200
- https://doi.org//10.1016/j.micinf.2004.12.004
- https://doi.org//10.1016/j.plipres.2010.01.002
- https://doi.org//10.1186/1471-2105-6-144
- https://doi.org//10.3389/fimmu.2021.600961
- https://doi.org//10.1038/s41586-019-1118-2
- https://doi.org//10.1039/b910205a
- https://doi.org//10.1161/CIRCGENETICS.114.000216
- https://doi.org//10.1186/s13059-017-1382-0
- https://doi.org//10.3389/fninf.2016.00049
- https://doi.org//10.1038/s41586-020-2649-2
- https://doi.org//10.1038/s41592-019-0686-2
- https://doi.org//10.25080/majora-92bf1922-011
- https://doi.org//10.5555/1953048.2078195
- https://doi.org//10.21105/joss.01026
Usage metrics
Read the peer-reviewed publication
Categories
- Transplantation Immunology
- Tumour Immunology
- Immunology not elsewhere classified
- Immunology
- Veterinary Immunology
- Animal Immunology
- Genetic Immunology
- Applied Immunology (incl. Antibody Engineering, Xenotransplantation and T-cell Therapies)
- Autoimmunity
- Cellular Immunology
- Humoural Immunology and Immunochemistry
- Immunogenetics (incl. Genetic Immunology)
- Innate Immunity