Image_3_Meta-Analysis of Yield-Related and N-Responsive Genes Reveals Chromosomal Hotspots, Key Processes and Candidate Genes for Nitrogen-Use Efficie.TIF (437.86 kB)
Download file

Image_3_Meta-Analysis of Yield-Related and N-Responsive Genes Reveals Chromosomal Hotspots, Key Processes and Candidate Genes for Nitrogen-Use Efficiency in Rice.TIF

Download (437.86 kB)
figure
posted on 08.06.2021, 05:25 by Supriya Kumari, Narendra Sharma, Nandula Raghuram

Nitrogen-use efficiency (NUE) is a function of N-response and yield that is controlled by many genes and phenotypic parameters that are poorly characterized. This study compiled all known yield-related genes in rice and mined them from the N-responsive microarray data to find 1,064 NUE-related genes. Many of them are novel genes hitherto unreported as related to NUE, including 80 transporters, 235 transcription factors (TFs), 44 MicroRNAs (miRNAs), 91 kinases, and 8 phosphatases. They were further shortlisted to 62 NUE-candidate genes following hierarchical methods, including quantitative trait locus (QTL) co-localization, functional evaluation in the literature, and protein–protein interactions (PPIs). They were localized to chromosomes 1, 3, 5, and 9, of which chromosome 1 with 26 genes emerged as a hotspot for NUE spanning 81% of the chromosomes. Further, co-localization of the NUE genes on NUE-QTLs resolved differences in the earlier studies that relied mainly on N-responsive genes regardless of their role in yield. Functional annotations and PPIs for all the 1,064 NUE-related genes and also the shortlisted 62 candidates revealed transcription, redox, phosphorylation, transport, development, metabolism, photosynthesis, water deprivation, and hormonal and stomatal function among the prominent processes. In silico expression analysis confirmed differential expression of the 62 NUE-candidate genes in a tissue/stage-specific manner. Experimental validation in two contrasting genotypes revealed that high NUE rice shows better photosynthetic performance, transpiration efficiency and internal water-use efficiency in comparison to low NUE rice. Feature Selection Analysis independently identified one-third of the common genes at every stage of hierarchical shortlisting, offering 6 priority targets to validate for improving the crop NUE.

History

References