Frontiers
Browse

Image_3_Machine Learning to Predict Lower Extremity Musculoskeletal Injury Risk in Student Athletes.PDF

Download (87.8 kB)
figure
posted on 2020-11-19, 05:00 authored by Maria Henriquez, Jacob Sumner, Mallory Faherty, Timothy Sell, Brinnae Bent

Injury rates in student athletes are high and often unpredictable. Injury risk factors are not agreed upon and often not validated. Here, we present a random-forest machine learning methodology for identifying the most significant injury risk factors and develop a model of lower extremity musculoskeletal injury risk in student athletes with physical performance metrics spanning joint strength measured with force transducers, postural stability measured using a force plate, and flexibility, measured with a goniometer, combined with previous injury metrics and athlete demographics. We tested our model in a population of 122 student athletes with performance metrics for the lower extremity musculoskeletal system and achieved an injury risk accuracy of 79% and identified significant injury risk factors, that could be used to increase accuracy of injury risk assessments, implement timely interventions, and decrease the number of career-ending or chronic injuries among student athletes.

History

Usage metrics

    Frontiers in Sports and Active Living

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC