Image_3_IL-23 Contributes to Campylobacter jejuni-Induced Intestinal Pathology via Promoting IL-17 and IFNγ Responses by Innate Lymphoid Cells.jpeg
Human pathogen Campylobacter jejuni is a significant risk factor for the development of long-term intestinal dysfunction although the cellular and molecular mechanisms remain scantily defined. IL-23 is an emerging therapeutic target for the treatment of inflammatory intestinal diseases, however its role in C. jejuni-driven intestinal pathology is not fully understood. IL-10 deficient mice represent a robust model to study the pathogenesis of C. jejuni infection because C. jejuni infection of mice lacking IL-10 results in symptoms and pathology that resemble human campylobacteriosis. To determine the role of IL-23 in C. jejuni-driven intestinal inflammation, we studied the disease pathogenesis in IL-23-/- mice with inhibited IL-10Rα signaling. These mice exhibited reduced intestinal pathology independent from bacterial clearance. Further, levels of IFNγ, IL-17, IL-22, TNF, and IL-6 were reduced and associated with reduced accumulation of neutrophils, monocytes and macrophages in the colon. Flow cytometry analysis revealed reduced production of IL-17 and IFNγ by group 1 and 3 innate lymphoid cells. Thus, our data suggest that IL-23 contributes to intestinal inflammation in C. jejuni infected mice by promoting IL-17 and IFNγ production by innate lymphoid cells.
History
References
- https://doi.org//10.1038/nrmicro1718
- https://doi.org//10.1128/IAI.00833-06
- https://doi.org//10.1016/s1286-4579(02)01553-8
- https://doi.org//10.1016/s0165-5728(99)00279-9
- https://doi.org//10.1016/s0165-5728(00)00369-6
- https://doi.org//10.1093/aje/153.6.610
- https://doi.org//10.1086/499813
- https://doi.org//10.1053/j.gastro.2009.04.001
- https://doi.org//10.1159/000212076
- https://doi.org//10.1093/gastro/gov029
- https://doi.org//10.1016/j.crohns.2011.07.012
- https://doi.org//10.1371/journal.pone.0007413
- https://doi.org//10.1016/j.micpath.2008.05.010
- https://doi.org//10.1038/s41575-018-0084-8
- https://doi.org//10.1016/j.immuni.2019.03.011
- https://doi.org//10.1016/j.immuni.2010.08.010
- https://doi.org//10.1084/jem.20061099
- https://doi.org//10.1084/jem.20061082
- https://doi.org//10.1038/mi.2013.33
- https://doi.org//10.1093/infdis/jit277
- https://doi.org//10.3748/wjg.v20.i45.17084
- https://doi.org//10.1128/IAI.00933-08
- https://doi.org//10.1053/j.gastro.2017.03.049
- https://doi.org//10.1080/14712598.2020.1697227
- https://doi.org//10.1038/nm1720
- https://doi.org//10.1084/jem.20050193
- https://doi.org//10.4049/jimmunol.172.5.2827
- https://doi.org//10.4049/jimmunol.1401244
- https://doi.org//10.1053/j.gastro.2011.09.042
- https://doi.org//10.1038/mi.2014.78
- https://doi.org//10.1016/j.jim.2015.02.003
- https://doi.org//10.1016/j.immuni.2010.02.011
- https://doi.org//10.4049/jimmunol.177.5.2760
- https://doi.org//10.4049/jimmunol.1201825
- https://doi.org//10.1038/mi.2013.97
- https://doi.org//10.1556/1886.2016.00008
- https://doi.org//10.1146/annurev.immunol.22.012703.104758
- https://doi.org//10.1016/j.immuni.2019.03.020
- https://doi.org//10.1084/jem.20090900
- https://doi.org//10.1038/s41385-019-0252-3
- https://doi.org//10.1093/intimm/dxr001
- https://doi.org//10.1016/j.immuni.2008.11.003
- https://doi.org//10.1371/journal.pone.0015398
- https://doi.org//10.1038/s41385-020-00353-8
- https://doi.org//10.1556/EuJMI.3.2013.3.1
- https://doi.org//10.1038/ncomms7525
- https://doi.org//10.1038/nature11813
- https://doi.org//10.1016/j.cell.2018.07.017
- https://doi.org//10.1016/j.cytogfr.2018.03.005
- https://doi.org//10.1016/j.imbio.2015.12.005
- https://doi.org//10.3390/microorganisms8040482
- https://doi.org//10.1172/JCI21404
- https://doi.org//10.1186/s13099-016-0106-4
- https://doi.org//10.3389/fcell.2015.00085
- https://doi.org//10.1016/j.immuni.2014.09.010
- https://doi.org//10.4049/jimmunol.1300016
- https://doi.org//10.1128/JB.186.14.4781-4795.2004
- https://doi.org//10.3389/fimmu.2018.00023
- https://doi.org//10.1038/nature08949
- https://doi.org//10.1038/nature14189
- https://doi.org//10.1016/j.immuni.2015.06.019
- https://doi.org//10.3389/fimmu.2019.00676
- https://doi.org//10.1016/j.chom.2015.06.011
- https://doi.org//10.1126/science.1135245
- https://doi.org//10.1038/ng.221
- https://doi.org//10.1620/tjem.240.15
- https://doi.org//10.1016/j.cytogfr.2018.12.002
- https://doi.org//10.1136/gutjnl-2020-321731
- https://doi.org//10.1053/j.gastro.2018.02.016
- https://doi.org//10.1084/jem.20180649
Usage metrics
Read the peer-reviewed publication
Categories
- Transplantation Immunology
- Tumour Immunology
- Immunology not elsewhere classified
- Immunology
- Veterinary Immunology
- Animal Immunology
- Genetic Immunology
- Applied Immunology (incl. Antibody Engineering, Xenotransplantation and T-cell Therapies)
- Autoimmunity
- Cellular Immunology
- Humoural Immunology and Immunochemistry
- Immunogenetics (incl. Genetic Immunology)
- Innate Immunity