Image_3_Hyper-Activation of mPFC Underlies Specific Traumatic Stress-Induced Sleep–Wake EEG Disturbances.JPEG
Sleep disturbances have been recognized as a core symptom of post-traumatic stress disorders (PTSD). However, the neural basis of PTSD-related sleep disturbances remains unclear. It has been challenging to establish the causality link between a specific brain region and traumatic stress-induced sleep abnormalities. Here, we found that single prolonged stress (SPS) could induce acute changes in sleep/wake duration as well as short- and long-term electroencephalogram (EEG) alterations in the isogenic mouse model. Moreover, the medial prefrontal cortex (mPFC) showed persistent high number of c-fos expressing neurons, of which more than 95% are excitatory neurons, during and immediately after SPS. Chemogenetic inhibition of the prelimbic region of mPFC during SPS could specifically reverse the SPS-induced acute suppression of delta power (1–4 Hz EEG) of non-rapid-eye-movement sleep (NREMS) as well as most of long-term EEG abnormalities. These findings suggest a causality link between hyper-activation of mPFC neurons and traumatic stress-induced specific sleep–wake EEG disturbances.
History
References
- https://doi.org//10.1037/bul0000053
- https://doi.org//10.1016/0013-4694(84)90002-6
- https://doi.org//10.1002/0471142301.ns1002s49
- https://doi.org//10.3791/3638
- https://doi.org//10.3791/3769
- https://doi.org//10.1002/da.22833
- https://doi.org//10.1016/s1388-2457(01)00488-6
- https://doi.org//10.1111/j.1365-2869.2012.01040.x
- https://doi.org//10.1016/j.bbr.2016.10.039
- https://doi.org//10.1038/npp.2012.94
- https://doi.org//10.1093/sleep/zsz269
- https://doi.org//10.1016/j.biopsych.2017.11.019
- https://doi.org//10.1523/jneurosci.21-08-02610.2001
- https://doi.org//10.3389/fnins.2019.00322
- https://doi.org//10.1038/nature20142
- https://doi.org//10.1523/JNEUROSCI.1303-17.2017
- https://doi.org//10.1176/appi.ajp.2012.12040432
- https://doi.org//10.1016/j.smrv.2007.09.003
- https://doi.org//10.1196/annals.1364.038
- https://doi.org//10.1016/j.neuroscience.2008.01.042
- https://doi.org//10.3389/fnbeh.2017.00227
- https://doi.org//10.1590/s0100-879x2012007500041
- https://doi.org//10.1007/s11920-017-0825-3
- https://doi.org//10.1016/j.bpsc.2018.07.013
- https://doi.org//10.1016/j.neubiorev.2008.11.005
- https://doi.org//10.1016/j.biopsycho.2012.01.001
- https://doi.org//10.1016/j.neuron.2017.05.038
- https://doi.org//10.1016/j.bbi.2014.12.022
- https://doi.org//10.1016/j.neubiorev.2006.03.004
- https://doi.org//10.5249/jivr.v8i2.808
- https://doi.org//10.1111/j.1469-8986.2007.537.x
- https://doi.org//10.1016/s0306-4530(97)00044-9
- https://doi.org//10.1046/j.1365-2826.1999.00288.x
- https://doi.org//10.1016/j.biopsych.2005.06.033
- https://doi.org//10.1016/j.biopsych.2004.05.021
- https://doi.org//10.1016/j.biopsych.2017.09.006
- https://doi.org//10.5665/sleep.5534
- https://doi.org//10.1016/0306-4522(96)00211-4
- https://doi.org//10.1152/ajpregu.2001.281.3.R846
- https://doi.org//10.1016/s0304-3940(97)00180-8
- https://doi.org//10.1176/appi.ajp.159.10.1696
- https://doi.org//10.1002/jts.20246
- https://doi.org//10.1016/j.smrv.2017.01.004
- https://doi.org//10.1016/j.biopsych.2017.08.021
- https://doi.org//10.1021/cn500342u
- https://doi.org//10.1016/j.bbr.2017.03.022
- https://doi.org//10.1016/j.neubiorev.2007.06.001
- https://doi.org//10.1016/j.bbr.2016.01.056
- https://doi.org//10.1016/j.bbr.2011.02.039
- https://doi.org//10.1016/j.neuron.2012.08.036
- https://doi.org//10.1523/JNEUROSCI.4297-06.2006
- https://doi.org//10.1176/ajp.146.6.697
- https://doi.org//10.1016/0013-4694(91)90203-g
- https://doi.org//10.1038/msb.2013.45
- https://doi.org//10.1093/sleep/zsy003
- https://doi.org//10.1177/0886260511430385
- https://doi.org//10.1038/nn0507-540
- https://doi.org//10.3389/fnins.2014.00063
- https://doi.org//10.1016/j.biopsych.2017.09.005
- https://doi.org//10.1007/s00221-015-4302-0
- https://doi.org//10.1093/sleep/zsz207
- https://doi.org//10.1038/s41586-018-0218-8
- https://doi.org//10.1016/j.biopsych.2004.09.015
- https://doi.org//10.1016/s0031-9384(00)00271-7
- https://doi.org//10.1002/da.20629
- https://doi.org//10.1111/j.1440-1819.2010.02084.x
- https://doi.org//10.1038/srep15976
Usage metrics
Read the peer-reviewed publication
Categories
- Radiology and Organ Imaging
- Decision Making
- Clinical Nursing: Tertiary (Rehabilitative)
- Image Processing
- Autonomic Nervous System
- Cellular Nervous System
- Biological Engineering
- Sensory Systems
- Central Nervous System
- Neuroscience
- Endocrinology
- Artificial Intelligence and Image Processing
- Signal Processing
- Rehabilitation Engineering
- Biomedical Engineering not elsewhere classified
- Stem Cells
- Neurogenetics
- Developmental Biology