Image_3_A Genome-Wide Association Study Dissects the Genetic Architecture of the Metaxylem Vessel Number in Maize Brace Roots.pdf (772.24 kB)
Download file

Image_3_A Genome-Wide Association Study Dissects the Genetic Architecture of the Metaxylem Vessel Number in Maize Brace Roots.pdf

Download (772.24 kB)
figure
posted on 10.03.2022, 06:50 authored by Meiling Liu, Meng Zhang, Shuai Yu, Xiaoyang Li, Ao Zhang, Zhenhai Cui, Xiaomei Dong, Jinjuan Fan, Lijun Zhang, Cong Li, Yanye Ruan

Metaxylem vessels in maize brace roots are key tissue, and their number (MVN) affects plant water and inorganic salt transportation and lodging resistance. Dissecting the genetic basis of MVN in maize brace roots can help guide the genetic improvement of maize drought resistance and lodging resistance during late developmental stages. In this study, we used 508 inbred lines with tropical, subtropical, and temperate backgrounds to analyze the genetic architecture of MVN in maize brace roots. The phenotypic variation in MVN in brace roots was evaluated in three environments, which revealed broad natural variation and relative low levels of heritability (h2 = 0.42). Stiff-stalk lines with a temperate background tended to have higher MVNs than plants in other genetic backgrounds. MVN was significantly positively correlated with plant height, tassel maximum axis length, ear length, and kernel number per row, which indicates that MVN may affect plant morphological development and yield. In addition, MVN was extremely significantly negatively correlated with brace root radius, but significantly positively correlated with brace root angle (BRA), diameter, and number, thus suggesting that the morphological function of some brace root traits may be essentially determined by MVN. Association analysis of MVN in brace roots combined 1,253,814 single nucleotide polymorphisms (SNPs) using FarmCPU revealed a total of nine SNPs significantly associated with MVN at P < 7.96 × 10–7. Five candidate genes for MVN that may participate in secondary wall formation (GRMZM2G168365, GRMZM2G470499, and GRMZM2G028982) and regulate flowering time (GRMZM2G381691 and GRMZM2G449165). These results provide useful information for understanding the genetic basis of MVN in brace root development. Further functional studies of identified candidate genes should help elucidate the molecular pathways that regulate MVN in maize brace roots.

History

References