Image_3_A Comparison of Co-expression Networks in Silk Gland Reveals the Causes of Silk Yield Increase During Silkworm Domestication.TIF (826.38 kB)
Download file

Image_3_A Comparison of Co-expression Networks in Silk Gland Reveals the Causes of Silk Yield Increase During Silkworm Domestication.TIF

Download (826.38 kB)
figure
posted on 27.03.2020, 12:45 by Qiu-Zhong Zhou, Ping Fu, Shu-Shang Li, Chang-Jiang Zhang, Quan-You Yu, Chuan-Zhen Qiu, Hong-Bo Zhang, Ze Zhang

Long-term domestication and selective breeding have increased the silk yield of the domestic silkworm (Bombyx mori) by several times the amount of the silk yield of its wild ancestor (Bombyx mandarina). However, little is known about the molecular mechanisms behind the increase in silk yield during domestication. Based on dynamic patterns of functional divergence in the silk gland between domestic and wild silkworms, we found that at early and intermediate stages of silk gland development, the up-regulated genes of the domestic silkworm were mainly involved in DNA integration, nucleic acid binding, and transporter activity, which are related to the division and growth of cells. This has led to the posterior silk gland (PSG) of the domestic silkworm having significantly more cells (“factories” of fibroin protein synthesis) than that of the wild silkworm. At the late stage of silk gland development, the up-regulated genes in the domestic silkworm was enriched in protein processing and ribosome pathways, suggesting protein synthesis efficiency is greatly improved during silkworm domestication. While there was an increase in fibroin protein synthesis, the production of sericin protein was simultaneously reduced in the silk gland of the domestic silkworm. This reflects that domestic and wild silkworms have been under different selection pressures. Importantly, we found that the network co-expressed with the silk-coding genes of the domestic silkworm was larger than that of the wild silkworm. Furthermore, many more genes co-expressed with silk-coding genes in the domestic silkworm were subjected to artificial selection than those in the wild silkworm. Our results revealed that the increase of silk yield during silkworm domestication is involved in improvement of a biological system which includes not only expansion of “factories” (cells of PSG) of protein synthesis, but also a high expression of silk-coding genes and silk production-related genes such as biological energy, transport, and ribosome pathway genes.

History

References