Image_2_Cognitive Performance During Confinement and Sleep Restriction in NASA’s Human Exploration Research Analog (HERA).jpeg (1.16 MB)

Image_2_Cognitive Performance During Confinement and Sleep Restriction in NASA’s Human Exploration Research Analog (HERA).jpeg

Download (1.16 MB)
posted on 28.04.2020, 05:34 by Jad Nasrini, Emanuel Hermosillo, David F. Dinges, Tyler M. Moore, Ruben C. Gur, Mathias Basner

Maintaining optimal cognitive performance in astronauts during spaceflight is critical to crewmember safety and mission success. To investigate the combined effects of confinement, isolation, and sleep deprivation on cognitive performance during spaceflight, we administered the computerized neurobehavioral test battery “Cognition” to crew members of simulated spaceflight missions as part of NASA’s ground-based Human Exploration Research Analog project. Cognition was administered to N = 32 astronaut-like subjects in four 1-week missions (campaign 1) and four 2 weeks missions (campaign 2), with four crewmembers per mission. In both campaigns, subjects performed significantly faster on Cognition tasks across time in mission without sacrificing accuracy, which is indicative of a learning effect. On an alertness and affect survey, subjects self-reported significant improvement in several affective domains with time in mission. During the sleep restriction challenge, subjects in campaign 1 were significantly less accurate on a facial emotion identification task during a night of partial sleep restriction. Subjects in campaign 2 were significantly slower and less accurate on psychomotor vigilance, and slower on cognitive throughput and motor praxis tasks during a night of total sleep deprivation. On the survey, subjects reported significantly worsening mood during the sleep loss challenge on several affective domains. These findings suggest that confinement and relative isolation of up to 2 weeks in this environment do not induce a significant negative impact on cognitive performance in any of the domains examined by Cognition, although the concurrent practice effect may have masked some of the mission’s effects. Conversely, a night of total sleep deprivation significantly decreased psychomotor vigilance and cognitive throughput performance in astronaut-like subjects. This underscores the importance of using cognitive tests designed specifically for the astronaut population, and that survey a range of cognitive domains to detect the differential effects of the wide range of stressors common to the spaceflight environment.