Image_1_Alteration of Porcine Intestinal Microbiota in Response to Dietary Manno-Oligosaccharide Supplementation.TIF
Manno-oligosaccharide (MOS) is a prebiotic derived from natural plants or yeasts. Here, we explored the response of intestinal microbiota and epithelial functions after ingestion of MOS in a porcine model. Sixteen pigs were randomly assigned into two treatments and fed with basal or MOS-containing (0.3% MOS) diet for 21 days. Results showed that MOS supplementation increased the cecal acetate content and ileal 16S rRNA gene copies (p < 0.05). Importantly, MOS decreased the abundance of phylum Proteobacteria in cecal digesta (p < 0.05). Moreover, MOS elevated the expression level of SCL5A8 and GPR109A but decreased the expression levels of HDAC1 and TNF-α in the ileal and cecal mucosa (p < 0.05). MOS upregulated the expression levels of tight-junction protein (ZO-1, claudin-1, and occludin) and IGF-1 in the ileum and cecum (p < 0.05). This study presents the alteration of intestinal microbiota composition and intestinal barrier function after MOS administration, and facilitates our understanding of the mechanisms behind the dietary MOS-modulated intestinal microbiota and health.
History
References
- https://doi.org//10.1007/s12072-017-9798-x
- https://doi.org//10.1093/ps/86.6.1070
- https://doi.org//10.1038/nmeth.f.303
- https://doi.org//10.1073/pnas.1000080107
- https://doi.org//10.2527/jas.2005-686
- https://doi.org//10.2527/jas.2010-3208
- https://doi.org//10.1007/s00253-019-10025-8
- https://doi.org//10.1016/S0079-6107(02)00037-8
- https://doi.org//10.1016/j.cell.2013.12.016
- https://doi.org//10.1079/PNS2002225
- https://doi.org//10.1038/nmeth.2604
- https://doi.org//10.1007/s10529-006-9127-2
- https://doi.org//10.2527/2002.80112904x
- https://doi.org//10.1016/s0168-1605(98)00005-1
- https://doi.org//10.1007/s12263-011-0229-7
- https://doi.org//10.1007/s10068-019-00572-1
- https://doi.org//10.3920/BM2011.0003
- https://doi.org//10.1007/s00394-020-02284-3
- https://doi.org//10.1016/j.foodhyd.2010.02.006
- https://doi.org//10.1016/j.vetmic.2017.05.016
- https://doi.org//10.1093/bioinformatics/btr507
- https://doi.org//10.1016/j.tim.2011.11.002
- https://doi.org//10.1016/j.carbpol.2006.12.011
- https://doi.org//10.1016/j.idairyj.2009.11.010
- https://doi.org//10.1038/s41522-019-0101-x
- https://doi.org//10.1016/B978-0-12-815249-2.00028-2
- https://doi.org//10.1093/ps/79.2.205
- https://doi.org//10.1186/1479-5876-10-224
- https://doi.org//10.1111/j.1365-2672.2005.02547.x
- https://doi.org//10.1038/nri2515
- https://doi.org//10.1053/tvjl.1999.0403
- https://doi.org//10.1186/s40779-017-0122-9
- https://doi.org//10.1210/mend.9.9.7491108
- https://doi.org//10.1074/jbc.M110.102947
- https://doi.org//10.1016/B978-0-12-800100-4.00003-9
- https://doi.org//10.4137/CMPed.S2008
- https://doi.org//10.1016/j.jff.2020.104040
- https://doi.org//10.1128/AEM.00062-07
- https://doi.org//10.1271/bbb.60668
- https://doi.org//10.1080/00071660801998613
- https://doi.org//10.1017/S0007114520004948