Image7_Investigating Effect of Coherent Emission Length on Pion Interferometry in High-Energy Collisions Using a Multiphase Transport Model.EPS
We study the two-pion Hanbury Brown–Twiss correlation functions for a partially coherent source constructed with the emission points and momenta of the identical pions generated by a multiphase transport model. A coherent emission length is introduced, the effects of which on the two-pion interferometry results in central Au-Au collisions at sNN=200 GeV, central Pb-Pb collisions at sNN=2.76 TeV, and p-p collisions at s=13 TeV are investigated. It is found that the effect of coherent emission length reduces the two-pion correlation functions in the nucleus–nucleus collisions, leading to an average decrease of chaoticity parameter by approximately 15% in the high transverse momentum range. However, the influence of coherent emission length on the two-pion correlation functions in the p-p collisions is small, while the effect of coherent emission length on the chaoticity parameter is almost independent of the transverse momentum of pion pair in the p-p collisions.
History
Usage metrics
Categories
- Biophysics
- Classical Physics not elsewhere classified
- Condensed Matter Physics not elsewhere classified
- Quantum Physics not elsewhere classified
- Solar System, Solar Physics, Planets and Exoplanets
- Mathematical Physics not elsewhere classified
- Classical and Physical Optics
- Astrophysics
- Photonics, Optoelectronics and Optical Communications
- Physical Chemistry of Materials
- Cloud Physics
- Tropospheric and Stratospheric Physics
- Physical Chemistry not elsewhere classified
- Applied Physics
- Computational Physics
- Condensed Matter Physics
- Particle Physics
- Plasma Physics
- High Energy Astrophysics; Cosmic Rays
- Mesospheric, Ionospheric and Magnetospheric Physics
- Space and Solar Physics