Image5_Spoken Digit Classification by In-Materio Reservoir Computing With Neuromorphic Atomic Switch Networks.TIF
Atomic Switch Networks comprising silver iodide (AgI) junctions, a material previously unexplored as functional memristive elements within highly interconnected nanowire networks, were employed as a neuromorphic substrate for physical Reservoir Computing This new class of ASN-based devices has been physically characterized and utilized to classify spoken digit audio data, demonstrating the utility of substrate-based device architectures where intrinsic material properties can be exploited to perform computation in-materio. This work demonstrates high accuracy in the classification of temporally analyzed Free-Spoken Digit Data These results expand upon the class of viable memristive materials available for the production of functional nanowire networks and bolster the utility of ASN-based devices as unique hardware platforms for neuromorphic computing applications involving memory, adaptation and learning.
History
References
- https://doi.org//10.1038/ncomms3072
- https://doi.org//10.1371/journal.pone.0042772
- https://doi.org//10.1007/s00340-007-2768-6
- https://doi.org//10.3934/matersci.2015.4.530
- https://doi.org//10.1149/2.017301jss
- https://doi.org//10.11138/FNeur/2013.28.3.191
- https://doi.org//10.1007/978-3-319-33924-5_22
- https://doi.org//10.7567/jjap.55.1102b2
- https://doi.org//10.24018/ejers.2020.5.8.2077
- https://doi.org//10.1038/s41467-017-02337-y
- https://doi.org//10.1109/IJCNN48605.2020.9207727
- https://doi.org//10.1109/IPGC.2008.4781352
- https://doi.org//10.1145/2770287.2770315
- https://doi.org//10.1063/1.2793686
- https://doi.org//10.1007/978-0-387-30440-3_190
- https://doi.org//10.1002/adma.200903680
- https://doi.org//10.1145/2000064.2000066
- https://doi.org//10.1038/s41928-018-0092-2
- https://doi.org//10.1103/physrevapplied.15.024030
- https://doi.org//10.1002/admi.201570065
- https://doi.org//10.1007/978-3-319-65826-1_14
- https://doi.org//10.3389/fnins.2015.00502
- https://doi.org//10.1109/iscas45731.2020.9181034
- https://doi.org//10.1109/TED.2012.2217146
- https://doi.org//10.1088/0022-3727/40/16/004
- https://doi.org//10.1103/physrevlett.90.066107
- https://doi.org//10.1007/s13218-012-0204-5
- https://doi.org//10.1021/acsami.7b10666
- https://doi.org//10.1038/s41467-018-05517-6
- https://doi.org//10.1002/aisy.201900084
- https://doi.org//10.1038/s41928-019-0313-3
- https://doi.org//10.1007/s00521-017-3028-2
- https://doi.org//10.35848/1347-4065/ab8d4f
- https://doi.org//10.1021/jz900375a
- https://doi.org//10.3762/bjnano.11.9
- https://doi.org//10.1103/physrevlett.111.136808
- https://doi.org//10.1109/NANOARCH.2017.8053728
- https://doi.org//10.32470/ccn.2018.1240-0
- https://doi.org//10.1007/978-3-540-74690-4_48
- https://doi.org//10.1088/0957-4484/24/38/384004
- https://doi.org//10.7551/978-0-262-31050-5-ch035
- https://doi.org//10.1109/mpul.2011.2175639
- https://doi.org//10.7567/jjap.53.01aa02
- https://doi.org//10.1038/s41467-019-11411-6
- https://doi.org//10.1016/j.neunet.2019.03.005
- https://doi.org//10.1088/0957-4484/23/14/145703
- https://doi.org//10.1038/nature03190
- https://doi.org//10.1109/mc.2017.3001242
- https://doi.org//10.1002/cta.282
- https://doi.org//10.1109/ICTON.2010.5548990
- https://doi.org//10.1038/nnano.2012.240
- https://doi.org//10.1038/ncomms1737
- https://doi.org//10.1038/s41467-020-20692-1
- https://doi.org//10.1109/icrc2020.2020.00007