Image5_Bi5O7I/g-C3N4 Heterostructures With Enhanced Visible-Light Photocatalytic Performance for Degradation of Tetracycline Hydrochloride.TIF
Bi5O7I/g-C3N4 p-n junctioned photocatalysts were synthesized by alcohol-heating and calcination in air. The structures, morphologies and optical properties of as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy (DRS). Photocatalytic activity of the heterojunctioned composites were evaluated by degradation of Rhodamine B (RhB) and tetracycline hydrochloride (TCH) under visible light illumination. The results indicated that the composites exhibited superior efficiencies for photodegradation of RhB and TCH in comparison with pure BiOI, Bi5O7I and g-C3N4. An effective built-in electric field was formed by the interface between p-type Bi5O7I and n-type g-C3N4, which promoted the efficient separation of photoinduced electron-hole pairs. In addition, 8% Bi5O7I/g-C3N4 composite showed excellent photostability in a five-cycle photocatalytic experiment. Experiments on scavenging active intermediates revealed the roles of active species.
History
Usage metrics
Categories
- Geochemistry
- Biochemistry
- Inorganic Chemistry
- Organic Chemistry
- Nuclear Chemistry
- Medical Biochemistry: Proteins and Peptides (incl. Medical Proteomics)
- Medical Biochemistry and Metabolomics not elsewhere classified
- Environmental Chemistry (incl. Atmospheric Chemistry)
- Analytical Biochemistry
- Cell Neurochemistry
- Electroanalytical Chemistry
- Enzymes
- Organic Green Chemistry
- Physical Organic Chemistry
- Catalysis and Mechanisms of Reactions
- Analytical Chemistry not elsewhere classified
- Food Chemistry and Molecular Gastronomy (excl. Wine)
- Environmental Chemistry