Image3_Pan-Cancer Analysis, Reveals COVID-19-Related BSG as a Novel Marker for Treatment and Identification of Multiple Human Cancers.tif (1.02 MB)
Download file

Image3_Pan-Cancer Analysis, Reveals COVID-19-Related BSG as a Novel Marker for Treatment and Identification of Multiple Human Cancers.tif

Download (1.02 MB)
figure
posted on 13.05.2022, 04:50 authored by Tao Huang, Wei-Ying He

Background: Coronavirus disease 2019 (COVID-19) has been a public threat and healthcare concern caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. During the period of the pandemic of COVID-19, cancer patients should be paid more attention as more severe events are found in cancer patients infected with SARS-CoV-2. Basigin (BSG) is an essential factor for the infection and progression of COVID-19 and tumorigenesis of multiple tumors, which may serve as a novel target for the effective treatment against COVID-19 and multiple human cancers.

Methods: A total of 19,020 samples from multiple centers were included in our research for the comprehensive investigation of the differences in BSG expression among human organs, cancer cells, cancer tissues, and normal tissues. Cox regression analysis and Kaplan–Meier curves were utilized to explore the prognosis factor of BSG in cancers. Correlation analyses were used to determine associations of BSG expression with tumor mutational burden, the immune microenvironment, etc. Gene set enrichment analysis was applied to explore the underlying mechanisms of BSG in cancers.

Results: Compared with normal tissues, BSG expression was high in 13 types of cancers (cholangiocarcinoma, etc.) and low in colon adenocarcinoma and rectum adenocarcinoma. BSG expression was related to the prognosis of eight cancers (e.g., invasive breast carcinoma) (p < 0.05). The gene also demonstrated a pronounced effect in identifying 12 cancers (cholangiocarcinoma, etc.) from their control samples (AUC >0.7). The BSG expression was associated with DNA methyltransferases, mismatch repair genes, immune infiltration levels, tumor mutational burden, microsatellite instability, neoantigen, and immune checkpoints, suggesting the potential of BSG as an exciting target for cancer treatment. BSG may play its role in several cancers by affecting several signaling pathways such as drug cytochrome metabolism P450 and JAK-STAT.

Conclusion:BSG may be a novel biomarker for treating and identifying multiple human cancers.

History

References