Image2.PDF
Ice-shelf grounding zones link the Antarctic ice-sheets to the ocean. Differential interferometric synthetic aperture radar (DInSAR) is commonly used to monitor grounding-line locations, but also contains information on grounding-zone ice thickness, ice properties and tidal conditions beneath the ice shelf. Here, we combine in-situ data with numerical modeling of ice-shelf flexure to investigate 2-D controls on the tidal bending pattern on the Southern McMurdo Ice Shelf. We validate our results with 9 double-differential TerraSAR-X interferograms. It is necessary to make adjustments to the tidal forcing to directly compare observations with model output and we find that when these adjustments are small (<1.5 cm) a viscoelastic model matches better, while an elastic model is more robust overall. Within landward embayments, where lateral stresses from surrounding protrusions damp the flexural response, a 2-D model captures behavior that is missed in simple 1-D models. We conclude that improvements in current tide models are required to allow for the full exploitation of DInSAR in grounding-zone glaciology.
History
References
- https://doi.org//10.5194/tc-5-569-2011
- https://doi.org//10.1002/2015GL066515
- https://doi.org//10.1029/2008JF001170
- https://doi.org//10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
- https://doi.org//10.3189/2012AoG60A155
- https://doi.org//10.1029/2006GL026907
- https://doi.org//10.1126/science.262.5139.1525
- https://doi.org//10.3189/002214311796905659
- https://doi.org//10.5194/tc-5-259-2011
- https://doi.org//10.5194/tc-7-647-2013
- https://doi.org//10.1016/j.rse.2013.11.002
- https://doi.org//10.1017/S0022143000026976
- https://doi.org//10.1029/2005GL023901
- https://doi.org//10.1029/2004GL021693
- https://doi.org//10.1007/s10236-006-0086-x
- https://doi.org//10.3189/2014JoG13J033
- https://doi.org//10.1002/2016JF003971
- https://doi.org//10.1002/2013GL059069
- https://doi.org//10.1029/2008GL035592
- https://doi.org//10.1017/S0954102003001032
- https://doi.org//10.3189/172756402781817752
- https://doi.org//10.3189/172756503781830386
- https://doi.org//10.1016/S0098-3004(02)00013-4
- https://doi.org//10.3189/172756502781831197
- https://doi.org//10.5194/tc-11-2481-2017
- https://doi.org//10.3189/172756403781815663
- https://doi.org//10.3189/172756400781820408
- https://doi.org//10.1017/S0022143000003464
- https://doi.org//10.1017/S0022143000001994
- https://doi.org//10.1002/2014GL060140
- https://doi.org//10.1029/2011GL047109
- https://doi.org//10.1029/1999JC000011
- https://doi.org//10.1017/jog.2017.44
- https://doi.org//10.3189/172756402781818049
- https://doi.org//10.1029/2006JF000664
- https://doi.org//10.1017/S0022143000042799
- https://doi.org//10.3189/172756409789624292
- https://doi.org//10.3189/172756494794587375
- https://doi.org//10.1029/94JB02467
- https://doi.org//10.1016/j.epsl.2012.11.008
- https://doi.org//10.1017/S0022143000023327
- https://doi.org//10.1017/jog.2017.15
Usage metrics
Read the peer-reviewed publication
Categories
- Solid Earth Sciences
- Climate Science
- Evolutionary Impacts of Climate Change
- Atmospheric Sciences not elsewhere classified
- Exploration Geochemistry
- Inorganic Geochemistry
- Isotope Geochemistry
- Organic Geochemistry
- Geochemistry not elsewhere classified
- Igneous and Metamorphic Petrology
- Ore Deposit Petrology
- Palaeontology (incl. Palynology)
- Structural Geology
- Tectonics
- Volcanology
- Geology not elsewhere classified
- Seismology and Seismic Exploration
- Glaciology
- Hydrogeology
- Natural Hazards
- Quaternary Environments
- Earth Sciences not elsewhere classified