Image1_A High-Density Genetic Map Enables Genome Synteny and QTL Mapping of Vegetative Growth and Leaf Traits in Gardenia.JPEG
The gardenia is a traditional medicinal horticultural plant in China, but its molecular genetic research has been largely hysteretic. Here, we constructed an F1 population with 200 true hybrid individuals. Using the genotyping-by-sequencing method, a high-density sex-average genetic map was generated that contained 4,249 SNPs with a total length of 1956.28 cM and an average genetic distance of 0.46 cM. We developed 17 SNP-based Kompetitive Allele-Specific PCR markers and found that 15 SNPs were successfully genotyped, of which 13 single-nucleotide polymorphism genotypings of 96 F1 individuals showed genotypes consistent with GBS-mined genotypes. A genomic collinearity analysis between gardenia and the Rubiaceae species Coffea arabica, Coffea canephora and Ophiorrhiza pumila showed the relativity strong conservation of LG11 with NC_039,919.1, HG974438.1 and Bliw01000011.1, respectively. Lastly, a quantitative trait loci analysis at three phenotyping time points (2019, 2020, and 2021) yielded 18 QTLs for growth-related traits and 31 QTLs for leaf-related traits, of which qBSBN7-1, qCD8 and qLNP2-1 could be repeatably detected. Five QTL regions (qCD8 and qSBD8, qBSBN7 and qSI7, qCD4-1 and qLLLS4, qLNP10 and qSLWS10-2, qSBD10 and qLLLS10) with potential pleiotropic effects were also observed. This study provides novel insight into molecular genetic research and could be helpful for further gene cloning and marker-assisted selection for early growth and development traits in the gardenia.
History
References
- https://doi.org//10.1002/ppj2.20001
- https://doi.org//10.1007/s10722-019-00744-2
- https://doi.org//10.1007/s10681-019-2412-7
- https://doi.org//10.1038/75556
- https://doi.org//10.1371/journal.pone.0003376
- https://doi.org//10.1038/s41438-020-00393-y
- https://doi.org//10.1093/nar/gkh121
- https://doi.org//10.1186/1471-2164-11-129
- https://doi.org//10.1038/s41598-017-18768-y
- https://doi.org//10.1016/j.molp.2020.06.009
- https://doi.org//10.1016/j.jep.2020.112829
- https://doi.org//10.1002/fsn3.1612
- https://doi.org//10.1007/s13580-017-0297-8
- https://doi.org//10.1016/j.bse.2014.11.009
- https://doi.org//10.1093/jxb/erw169
- https://doi.org//10.3390/genes10080583
- https://doi.org//10.1111/pbi.13002
- https://doi.org//10.1371/journal.pone.0019379
- https://doi.org//10.1111/nph.16459
- https://doi.org//10.1186/s12870-018-1386-2
- https://doi.org//10.1007/s00122-020-03682-1
- https://doi.org//10.1007/s11295-006-0049-x
- https://doi.org//10.1002/ptr.5130
- https://doi.org//10.1016/j.phymed.2018.07.005
- https://doi.org//10.1007/s10142-017-0552-1
- https://doi.org//10.1007/s10528-016-9721-5
- https://doi.org//10.1186/s12864-016-2560-2
- https://doi.org//10.3389/fpls.2018.00816
- https://doi.org//10.1038/s41467-020-14746-7
- https://doi.org//10.1111/j.1469-8137.2005.01424.x
- https://doi.org//10.1093/gbe/evr041
- https://doi.org//10.1093/nar/28.1.27
- https://doi.org//10.1101/gr.229202
- https://doi.org//10.4103/1735-5362.301344
- https://doi.org//10.1007/s00122-018-3054-1
- https://doi.org//10.1534/g3.114.012294
- https://doi.org//10.1111/j.1469-1809.1943.tb02321.x
- https://doi.org//10.1007/s11295-006-0069-6
- https://doi.org//10.1007/s00122-019-03302-7
- https://doi.org//10.1093/bioinformatics/btp324
- https://doi.org//10.1093/bioinformatics/btp352
- https://doi.org//10.1002/jssc.202000957
- https://doi.org//10.1016/j.tplants.2015.08.012
- https://doi.org//10.1186/s12870-019-2207-y
- https://doi.org//10.1111/pbi.13195
- https://doi.org//10.1186/1471-2164-15-285
- https://doi.org//10.1101/gr.107524.110
- https://doi.org//10.1007/s13353-019-00518-7
- https://doi.org//10.1007/s11295-015-0927-1
- https://doi.org//10.1038/s41438-021-00472-8
- https://doi.org//10.1007/s11295-007-0084-2
- https://doi.org//10.1007/s11295-014-0756-7
- https://doi.org//10.1007/s00122-018-3238-8
- https://doi.org//10.1073/pnas.0307901101
- https://doi.org//10.1038/s41598-018-32674-x
- https://doi.org//10.1371/journal.pone.0037135
- https://doi.org//10.3389/fpls.2015.00367
- https://doi.org//10.1248/cpb.c13-00262
- https://doi.org//10.1186/s12870-020-02567-1
- https://doi.org//10.3389/fpls.2016.01031
- https://doi.org//10.1111/raq.12193
- https://doi.org//10.1186/s12870-020-2310-0
- https://doi.org//10.1007/s11295-011-0448-5
- https://doi.org//10.1016/j.plaphy.2004.10.009
- https://doi.org//10.1111/pbr.12316
- https://doi.org//10.1038/s41438-021-00574-3
- https://doi.org//10.1038/s41438-020-0333-1
- https://doi.org//10.1016/j.copbio.2020.01.010
- https://doi.org//10.1007/s00122-016-2787-y
- https://doi.org//10.11869/j.issn.100-8551.2015.02.0235
- https://doi.org//10.1371/journal.pone.0058700
- https://doi.org//10.1038/s41588-020-0690-6
- https://doi.org//10.1007/s00122-019-03351-y
- https://doi.org//10.1155/2020/2903861
- https://doi.org//10.7717/peerj.203
- https://doi.org//10.1016/j.scienta.2013.08.020
- https://doi.org//10.1007/s00122-005-0124-y
- https://doi.org//10.1186/1471-2164-7-274
- https://doi.org//10.1080/16546628.2017.1265324
- https://doi.org//10.1016/j.aquaculture.2018.04.018
- https://doi.org//10.1093/nar/gkq603
- https://doi.org//10.1038/nmeth.2023
- https://doi.org//10.1007/s00122-015-2498-9
- https://doi.org//10.1038/s41598-019-39448-z
- https://doi.org//10.3389/fpls.2019.01782
- https://doi.org//10.1111/pbi.12371
- https://doi.org//10.1021/acs.jproteome.9b00140
- https://doi.org//10.1186/s12870-019-2008-3
- https://doi.org//10.1007/s12041-014-0348-1
- https://doi.org//10.1186/s12915-020-00795-3
- https://doi.org//10.1111/pbi.13633
- https://doi.org//10.1139/g03-106
- https://doi.org//10.1186/s12864-020-6658-1
- https://doi.org//10.1073/pnas.2019698117
- https://doi.org//10.1016/j.scienta.2018.10.039
- https://doi.org//10.1007/s11295-016-1032-9
- https://doi.org//10.1186/s12870-021-03115-1
- https://doi.org//10.1002/ppj2.20015
Usage metrics
Read the peer-reviewed publication
Categories
- Gene and Molecular Therapy
- Gene Expression (incl. Microarray and other genome-wide approaches)
- Genetics
- Genetically Modified Animals
- Livestock Cloning
- Developmental Genetics (incl. Sex Determination)
- Epigenetics (incl. Genome Methylation and Epigenomics)
- Biomarkers
- Genomics
- Genome Structure and Regulation
- Genetic Engineering