datasheet2_The Target MicroRNAs and Potential Underlying Mechanisms of Yiqi-Bushen-Tiaozhi Recipe against‐Non-Alcoholic Steatohepatitis.zip
MicroRNAs (miRNAs) have emerged as potential therapeutic targets for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH). Traditional Chineses Medicine (TCM) plays an important role in the prevention or treatment of NAFLD/NASH. However, miRNA targets of TCM against NASH still remain largely unknown. Here, we showed that Yiqi-Bushen-Tiaozhi (YBT) recipe effectively attenuated diet-induced NASH in C57BL/6 mice. To identify the miRNA targets of YBT and understand the potential underlying mechanisms, we performed network pharmacology using miRNA and mRNA deep sequencing data combined with Ingenuity Pathway Analysis (IPA). Mmu-let-7a-5p, mmu-let-7b-5p, mmu-let-7g-3p and mmu-miR-106b-3p were screened as the main targets of YBT. Our results suggested that YBT might alleviate NASH by regulating the expression of these miRNAs that potentially modulate inflammation/immunity and oxidative stress. This study provides useful information for guiding future studies on the mechanism of YBT against NASH by regulating miRNAs.
History
References
- https://doi.org//10.7554/eLife.05005
- https://doi.org//10.1016/j.dsx.2018.03.016
- https://doi.org//10.1016/j.ajpath.2010.11.026
- https://doi.org//10.1007/s10620-016-4049-x
- https://doi.org//10.1080/15569527.2017.1355314
- https://doi.org//10.3389/fgene.2017.00031
- https://doi.org//10.1172/JCI18212
- https://doi.org//10.1042/CS20130833
- https://doi.org//10.1016/j.ebiom.2018.10.048
- https://doi.org//10.1016/j.jgr.2017.10.002
- https://doi.org//10.1093/database/bau126
- https://doi.org//10.1038/srep13729
- https://doi.org//10.3390/ijms19123966
- https://doi.org//10.1016/j.jhep.2019.03.024
- https://doi.org//10.1136/gutjnl-2018-318146
- https://doi.org//10.3390/nu9040360
- https://doi.org//10.3389/fphar.2019.00582
- https://doi.org//10.3727/105221618X15341831737687
- https://doi.org//10.1172/Jci63539
- https://doi.org//10.15171/mejdd.2018.113
- https://doi.org//10.1002/mnfr.202000015
- https://doi.org//10.1016/j.bbagen.2012.03.020
- https://doi.org//10.1038/s41575-018-0082-x
- https://doi.org//10.1002/hep.20701
- https://doi.org//10.1002/hep.30307
- https://doi.org//10.1016/j.jhep.2017.10.015
- https://doi.org//10.1016/j.redox.2019.101302
- https://doi.org//10.1016/j.taap.2019.114664
- https://doi.org//10.2147/Ott.S59871
- https://doi.org//10.1155/2018/9547613
- https://doi.org//10.1093/ofid/ofy268
- https://doi.org//10.1016/j.cmet.2017.01.008
- https://doi.org//10.1074/jbc.M116.773291
- https://doi.org//10.18632/oncotarget.24601
- https://doi.org//10.1016/j.bbadis.2008.06.006
- https://doi.org//10.3390/nu8100659
- https://doi.org//10.3892/ijmm.2019.4107
- https://doi.org//10.1038/s41575-019-0144-8
- https://doi.org//10.1038/cddis.2015.196
- https://doi.org//10.1016/j.taap.2019.114664
- https://doi.org//10.1016/j.exppara.2017.09.024
- https://doi.org//10.1016/j.molcel.2018.06.029
- https://doi.org//10.17305/bjbms.2017.2457
- https://doi.org//10.1080/21691401.2016.1196456
- https://doi.org//10.1016/j.biopha.2017.04.128
- https://doi.org//10.1016/j.apsb.2015.01.002
- https://doi.org//10.3748/wjg.v22.i30.6890
- https://doi.org//10.3390/molecules24020230
- https://doi.org//10.3389/fphar.2019.00123
- https://doi.org//10.3892/etm.2019.7457