Frontiers
Browse
- No file added yet -

Table_S2_Metagenomics of Coral Reefs Under Phase Shift and High Hydrodynamics.doc

Download (33.5 kB)
dataset
posted on 2018-10-04, 04:29 authored by Pedro Milet Meirelles, Ana Carolina Soares, Louisi Oliveira, Luciana Leomil, Luciana Reis Appolinario, Ronaldo Bastos Francini-Filho, Rodrigo Leão de Moura, Renato Tenan de Barros Almeida, Paulo S. Salomon, Gilberto Menezes Amado-Filho, Ricardo Kruger, Eduardo Siegle, Diogo A. Tschoeke, Isao Kudo, Sayaka Mino, Tomoo Sawabe, Cristiane C. Thompson, Fabiano L. Thompson

Local and global stressors have affected coral reef ecosystems worldwide. Switches from coral to algal dominance states and microbialization are the major processes underlying the global decline of coral reefs. However, most of the knowledge concerning microbialization has not considered physical disturbances (e.g., typhoons, waves, and currents). Southern Japan reef systems have developed under extreme physical disturbances. Here, we present analyses of a three-year investigation on the coral reefs of Ishigaki Island that comprised benthic and fish surveys, water quality analyses, metagenomics and microbial abundance data. At the four studied sites, inorganic nutrient concentrations were high and exceeded eutrophication thresholds. The dissolved organic carbon (DOC) concentration (up to 233.3 μM) and microbial abundance (up to 2.5 × 105 cell/mL) values were relatively high. The highest vibrio counts coincided with the highest turf cover (∼55–85%) and the lowest coral cover (∼4.4–10.2%) and fish biomass (0.06 individuals/m2). Microbiome compositions were similar among all sites and were dominated by heterotrophs. Our data suggest that a synergic effect among several regional stressors are driving coral decline. In a high hydrodynamics reef environment, high algal/turf cover, stimulated by eutrophication and low fish abundance due to overfishing, promote microbialization. Together with crown-of-thorns starfish (COTS) outbreaks and possible of climate changes impacts, theses coral reefs are likely to collapse.

History

Usage metrics

    Frontiers in Microbiology

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC