Frontiers
Browse

Table_7_Three feminizing Wolbachia strains in a single host species: comparative genomics paves the way for identifying sex reversal factors.XLSX

Download (13.97 kB)
dataset
posted on 2024-08-22, 16:26 authored by Pierre Grève, Bouziane Moumen, Didier Bouchon
Introduction

Endosymbiotic bacteria in the genus Wolbachia have evolved numerous strategies for manipulating host reproduction in order to promote their own transmission. This includes the feminization of males into functional females, a well-studied phenotype in the isopod Armadillidium vulgare. Despite an early description of this phenotype in isopods and the development of an evolutionary model of host sex determination in the presence of Wolbachia, the underlying genetic mechanisms remain elusive.

Methods

Here we present the first complete genomes of the three feminizing Wolbachia (wVulC, wVulP, and wVulM) known to date in A. vulgare. These genomes, belonging to Wolbachia B supergroup, contain a large number of mobile elements such as WO prophages with eukaryotic association modules. Taking advantage of these data and those of another Wolbachia-derived feminizing factor integrated into the host genome (f element), we used a comparative genomics approach to identify putative feminizing factors.

Results

This strategy has enabled us to identify three prophage-associated genes secreted by the Type IV Secretion System: one ankyrin repeat domain-containing protein, one helix-turn-helix transcriptional regulator and one hypothetical protein. In addition, a latrotoxin-related protein, associated with phage relic genes, was shared by all three genomes and the f element.

Conclusion

These putative feminization-inducing proteins shared canonical interaction features with eukaryotic proteins. These results pave the way for further research into the underlying functional interactions.

History

Usage metrics

    Frontiers in Microbiology

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC