Table_5_Virtual Reality and Eye-Tracking Assessment, and Treatment of Unilateral Spatial Neglect: Systematic Review and Future Prospects.docx (25.49 kB)

Table_5_Virtual Reality and Eye-Tracking Assessment, and Treatment of Unilateral Spatial Neglect: Systematic Review and Future Prospects.docx

Download (25.49 kB)
dataset
posted on 22.03.2022, 17:02 authored by Alexander Pilgaard Kaiser, Kristian Westergaard Villadsen, Afshin Samani, Hendrik Knoche, Lars Evald

Unilateral spatial neglect (USN) is a disorder characterized by the failure to report, respond to, or orient toward the contralateral side of space to a brain lesion. Current assessment methods often fail to discover milder forms, cannot differentiate between unilateral spatial neglect subtypes and lack ecological validity. There is also a need for treatment methods that target subtypes. Immersive virtual reality (VR) systems in combination with eye-tracking (ET) have the potential to overcome these shortcomings, by providing more naturalistic environments and tasks, with sensitive and detailed measures. This systematic review examines the state of the art of research on these technologies as applied in the assessment and treatment of USN. As we found no studies that combined immersive VR and ET, we reviewed these approaches individually. The review of VR included seven articles, the ET review twelve. The reviews revealed promising results. (1) All included studies found significant group-level differences for several USN measures. In addition, several studies found asymmetric behavior in VR and ET tasks for patients who did not show signs of USN in conventional tests. Particularly promising features were multitasking in complex VR environments and detailed eye-movement analysis. (2) No VR and only a few ET studies attempted to differentiate USN subtypes, although the technologies appeared appropriate. One ET study grouped USN participants using individual heatmaps, and another differentiated between subtypes on drawing tasks. Regarding (3) ecological validity, although no studies tested the prognostic validity of their assessment methods, VR and ET studies utilized naturalistic tasks and stimuli reflecting everyday situations. Technological characteristics, such as the field of view and refresh rate of the head-mounted displays, could be improved, though, to improve ecological validity. We found (4) no studies that utilized VR or ET technologies for USN treatment up until the search date of the 26th of February 2020. In conclusion, VR-ET-based systems show great potential for USN assessment. VR-ET holds great promise for treatment, for example, by monitoring behavior and adapting and tailoring to the individual person’s needs and abilities. Future research should consider developing methods for individual subtypes and differential diagnostics to inform individual treatment programs.

History

References