Table_4_T-BET and EOMES Accelerate and Enhance Functional Differentiation of Human Natural Killer Cells.xlsx
T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.
History
References
- https://doi.org//10.3389/fimmu.2018.01869
- https://doi.org//10.1182/blood-2007-09-077438
- https://doi.org//10.1007/978-3-319-23916-3
- https://doi.org//10.1084/jem.20052507
- https://doi.org//10.3389/fimmu.2017.00360
- https://doi.org//10.1016/j.it.2013.07.005
- https://doi.org//10.1371/journal.pone.0030930
- https://doi.org//10.3389/fimmu.2017.00130
- https://doi.org//10.1182/blood-2011-04-347070
- https://doi.org//10.4049/jimmunol.1501522
- https://doi.org//10.1182/blood-2012-03-415364
- https://doi.org//10.1242/dev.104471
- https://doi.org//10.1016/S0092-8674(00)80702-3
- https://doi.org//10.3389/fimmu.2016.00241
- https://doi.org//10.1002/eji.201747299
- https://doi.org//10.1016/S1074-7613(04)00076-7
- https://doi.org//10.1016/j.immuni.2011.11.016
- https://doi.org//10.3389/fimmu.2014.00217
- https://doi.org//10.1172/jci.insight.90063
- https://doi.org//10.1089/hum.1996.7.12-1405
- https://doi.org//10.4049/jimmunol.167.8.4468
- https://doi.org//10.1007/978-1-60761-362-6_2
- https://doi.org//10.1093/bioinformatics/bts635
- https://doi.org//10.1186/s13059-014-0550-8
- https://doi.org//10.1038/ng1180
- https://doi.org//10.1073/pnas.0506580102
- https://doi.org//10.1038/ng.3646
- https://doi.org//10.1038/s41590-020-0747-9
- https://doi.org//10.1016/j.molcel.2010.05.004
- https://doi.org//10.1182/blood.2020005204
- https://doi.org//10.1038/s41388-020-1340-2
- https://doi.org//10.1111/jth.15171
- https://doi.org//10.32607/20758251-2018-10-1-15-23
- https://doi.org//10.3109/10428199909167386
- https://doi.org//10.3389/fimmu.2017.00535
- https://doi.org//10.1172/JCI86276
- https://doi.org//10.1016/j.immuni.2004.12.012
- https://doi.org//10.1016/j.molcel.2020.04.018
- https://doi.org//10.1016/j.cell.2016.04.014
- https://doi.org//10.1126/science.1215621
- https://doi.org//10.1084/jem.20150809
- https://doi.org//10.1182/blood-2010-08-303123
- https://doi.org//10.1038/s41598-017-03256-0
- https://doi.org//10.1038/s41467-019-11947-7
- https://doi.org//10.3389/fimmu.2017.00930
- https://doi.org//10.1371/journal.pone.0218674
- https://doi.org//10.3389/fimmu.2015.00368
- https://doi.org//10.1158/1078-0432.CCR-1087-3
- https://doi.org//10.1182/blood-2008-10-187179
- https://doi.org//10.1084/jem.20131560
- https://doi.org//10.1016/S1074-7613(00)80638-X
- https://doi.org//10.1016/j.immuni.2012.04.006
- https://doi.org//10.1038/nri3536
- https://doi.org//10.1084/jem.20041330
- https://doi.org//10.1016/j.isci.2018.12.018
- https://doi.org//10.1038/s41467-019-11233-6
- https://doi.org//10.1084/jem.20081242
- https://doi.org//10.1002/eji.201344072
- https://doi.org//10.1111/j.1365-3083.2006.01803.x
- https://doi.org//10.3109/10428194.2012.708026
- https://doi.org//10.1158/2326-6066.CIR-17-0207
- https://doi.org//10.1371/journal.pone.0009221
- https://doi.org//10.1089/scd.2011.0659
- https://doi.org//10.1158/1078-0432.CCR-16-2981
- https://doi.org//10.3389/fimmu.2016.00105
- https://doi.org//10.3109/10428194.2014.911859
- https://doi.org//10.1182/blood-2014-07-586610
- https://doi.org//10.1016/j.intimp.2012.09.014
- https://doi.org//10.1080/07357907.2018.1515315
- https://doi.org//10.1158/1078-0432.CCR-15-2710
- https://doi.org//10.1038/ni1582
- https://doi.org//10.1126/science.1090148
- https://doi.org//10.1371/journal.pgen.1006587
- https://doi.org//10.1007/s11033-007-9068-4
- https://doi.org//10.1371/journal.pone.0219449
Usage metrics
Read the peer-reviewed publication
Categories
- Transplantation Immunology
- Tumour Immunology
- Immunology not elsewhere classified
- Immunology
- Veterinary Immunology
- Animal Immunology
- Genetic Immunology
- Applied Immunology (incl. Antibody Engineering, Xenotransplantation and T-cell Therapies)
- Autoimmunity
- Cellular Immunology
- Humoural Immunology and Immunochemistry
- Immunogenetics (incl. Genetic Immunology)
- Innate Immunity