Table_2_Whole-Genome Assessment of Clinical Acinetobacter baumannii Isolates Uncovers Potentially Novel Factors Influencing Carbapenem Resistance.XLSX
Carbapenems—one of the important last-line antibiotics for the treatment of gram-negative infections—are becoming ineffective for treating Acinetobacter baumannii infections. Studies have identified multiple genes (and mechanisms) responsible for carbapenem resistance. In some A. baumannii strains, the presence/absence of putative resistance genes is not consistent with their resistance phenotype—indicating the genomic factors underlying carbapenem resistance in A. baumannii are not fully understood. Here, we describe a large-scale whole-genome genotype-phenotype association study with 349 A. baumannii isolates that extends beyond the presence/absence of individual antimicrobial resistance genes and includes the genomic positions and pairwise interactions of genes. Ten known resistance genes exhibited statistically significant associations with resistance to imipenem, a type of carbapenem: blaOXA-23, qacEdelta1, sul1, mphE, msrE, ant(3”)-II, aacC1, yafP, aphA6, and xerD. A review of the strains without any of these 10 genes uncovered a clade of isolates with diverse imipenem resistance phenotypes. Finer resolution evaluation of this clade revealed the presence of a 38.6 kbp conserved chromosomal region found exclusively in imipenem-susceptible isolates. This region appears to host several HTH-type DNA binding transcriptional regulators and transporter genes. Imipenem-susceptible isolates from this clade also carried two mutually exclusive plasmids that contain genes previously known to be specific to imipenem-susceptible isolates. Our analysis demonstrates the utility of using whole genomes for genotype-phenotype correlations in the context of antibiotic resistance and provides several new hypotheses for future research.
History
References
- https://doi.org//10.1099/mgen.0.000062
- https://doi.org//10.1093/nar/gkz935
- https://doi.org//10.1016/S0022-2836%2805%2980360-2
- https://doi.org//10.1128/AAC.02522-13
- https://doi.org//10.1038/nbt.3103
- https://doi.org//10.1089/cmb.2012.0021
- https://doi.org//10.1186/s13054-018-2247-y
- https://doi.org//10.1128/AAC.02526-18
- https://doi.org//10.1099/jmm.0.008904-0
- https://doi.org//10.1038/s41576-019-0108-4
- https://doi.org//10.1086/595011
- https://doi.org//10.1128/AAC.01684-07
- https://doi.org//10.1590/S0074-02762011000400020
- https://doi.org//10.1128/AAC.00459-11
- https://doi.org//10.1186/1471-2164-15-815
- https://doi.org//10.3390/ijerph120808871
- https://doi.org//10.1038/nmeth.2474
- https://doi.org//10.3390/medsci6010001
- https://doi.org//10.1093/jac/dkg407
- https://doi.org//10.1101/gr.2289704
- https://doi.org//10.7717/peerj-cs.20
- https://doi.org//10.1371/journal.pone.0010034
- https://doi.org//10.1128/CMR.00117-13
- https://doi.org//10.2174/138161213804070285
- https://doi.org//10.1186/s13059-019-1791-3
- https://doi.org//10.1016/j.ijantimicag.2009.10.024
- https://doi.org//10.1093/bioinformatics/btt086
- https://doi.org//10.1093/nar/gkr050
- https://doi.org//10.1099/mgen.0.000306
- https://doi.org//10.1099/mgen.0.000165
- https://doi.org//10.1128/AAC.49.10.4174-4179.2005
- https://doi.org//10.1128/AAC.49.8.3198-3202.2005
- https://doi.org//10.1128/AAC.00797-17
- https://doi.org//10.1186/s13059-015-0849-0
- https://doi.org//10.1089/mdr.2009.0828
- https://doi.org//10.3390/ijerph120810079
- https://doi.org//10.1093/nar/gkn201
- https://doi.org//10.1186/1471-2105-11-595
- https://doi.org//10.1016/j.apjtm.2015.05.011
- https://doi.org//10.3390/genes8010012
- https://doi.org//10.1128/AAC.04609-14
- https://doi.org//10.1093/bioinformatics/btl158
- https://doi.org//10.20944/preprints202006.0163.v1
- https://doi.org//10.3390/antibiotics9070405
- https://doi.org//10.1186/1471-2164-15-1163
- https://doi.org//10.1371/journal.pcbi.1005944
- https://doi.org//10.1128/AAC.49.4.1432-1440.2005
- https://doi.org//10.1093/jac/dkx322
- https://doi.org//10.1016/j.bjm.2016.06.005
- https://doi.org//10.1017/S095026881200074X
- https://doi.org//10.1093/bioinformatics/btv421
- https://doi.org//10.1128/CMR.00058-07
- https://doi.org//10.1111/j.1469-0691.2006.01456.x
- https://doi.org//10.3389/fmicb.2012.00148
- https://doi.org//10.1128/AAC.01277-16
- https://doi.org//10.1093/bioinformatics/btu153
- https://doi.org//10.1016/S1473-3099%2817%2930753-3
- https://doi.org//10.1128/AAC.01897-13
- https://doi.org//10.1093/jac/dkaa502
- https://doi.org//10.1111/j.1574-6968.2006.00195.x
- https://doi.org//10.1099/acmi.0.000140
- https://doi.org//10.1038/s41592-020-0772-5
- https://doi.org//10.1128/AAC.00477-16
- https://doi.org//10.1093/nar/gkw1017
- https://doi.org//10.1016/j.ijantimicag.2012.09.008
- https://doi.org//10.1186/s12941-015-0066-4
- https://doi.org//10.1093/bioinformatics/btaa213