Table_2_Single Cell Analysis of Blood Mononuclear Cells Stimulated Through Either LPS or Anti-CD3 and Anti-CD28.XLSX
Immune cell activation assays have been widely used for immune monitoring and for understanding disease mechanisms. However, these assays are typically limited in scope. A holistic study of circulating immune cell responses to different activators is lacking. Here we developed a cost-effective high-throughput multiplexed single-cell RNA-seq combined with epitope tagging (CITE-seq) to determine how classic activators of T cells (anti-CD3 coupled with anti-CD28) or monocytes (LPS) alter the cell composition and transcriptional profiles of peripheral blood mononuclear cells (PBMCs) from healthy human donors. Anti-CD3/CD28 treatment activated all classes of lymphocytes either directly (T cells) or indirectly (B and NK cells) but reduced monocyte numbers. Activated T and NK cells expressed senescence and effector molecules, whereas activated B cells transcriptionally resembled autoimmune disease- or age-associated B cells (e.g., CD11c, T-bet). In contrast, LPS specifically targeted monocytes and induced two main states: early activation characterized by the expression of chemoattractants and a later pro-inflammatory state characterized by expression of effector molecules. These data provide a foundation for future immune activation studies with single cell technologies (https://czi-pbmc-cite-seq.jax.org/).
History
References
- https://doi.org//10.3389/fmolb.2017.00096
- https://doi.org//10.1016/j.cell.2018.10.022
- https://doi.org//10.1038/s41591-020-0769-8
- https://doi.org//10.1126/sciimmunol.aag0192
- https://doi.org//10.1016/j.cell.2016.03.008
- https://doi.org//10.1159/000233644
- https://doi.org//10.1016/S0022-1759(03)00010-3
- https://doi.org//10.1146/annurev.immunol.021908.132706
- https://doi.org//10.1615/critrevimmunol.v31.i5.20
- https://doi.org//10.1084/jem.20170412
- https://doi.org//10.1073/pnas.1714765115
- https://doi.org//10.1016/j.clim.2014.12.004
- https://doi.org//10.1126/scisignal.aan2392
- https://doi.org//10.1038/nri3547
- https://doi.org//10.1016/j.arr.2010.10.007
- https://doi.org//10.18632/aging.100642
- https://doi.org//10.1126/science.aaw6433
- https://doi.org//10.1038/nri.2017.76
- https://doi.org//10.7554/eLife.27041
- https://doi.org//10.1038/s41590-020-0643-3
- https://doi.org//10.1038/s41467-019-12464-3
- https://doi.org//10.1038/nature13437
- https://doi.org//10.1126/science.aah4573
- https://doi.org//10.1016/j.celrep.2019.12.063
- https://doi.org//10.1038/s41590-020-0743-0
- https://doi.org//10.1038/nmeth.4380
- https://doi.org//10.1038/nbt.4042
- https://doi.org//10.1016/j.jaut.2011.11.015
- https://doi.org//10.4049/jimmunol.164.6.2897
- https://doi.org//10.1016/j.immuni.2010.12.012
- https://doi.org//10.1172/JCI13543
- https://doi.org//10.1038/s41467-017-01728-5
- https://doi.org//10.1038/s41598-019-43578-9
- https://doi.org//10.1186/s12864-018-4772-0
- https://doi.org//10.1084/jem.20050128
- https://doi.org//10.1073/pnas.1521491113
- https://doi.org//10.1182/blood-2011-01-330530
- https://doi.org//10.1172/JCI91250
- https://doi.org//10.1073/pnas.1901340116
- https://doi.org//10.1016/j.immuni.2018.08.015
- https://doi.org//10.1089/omi.2011.0118
- https://doi.org//10.1371/journal.pgen.1006641
- https://doi.org//10.3389/fimmu.2015.00528
- https://doi.org//10.1038/s41598-018-37684-3
- https://doi.org//10.1016/j.trim.2013.08.001
- https://doi.org//10.1158/2326-6066.CIR-16-0400
- https://doi.org//10.1016/j.jaci.2004.06.046
- https://doi.org//10.1186/s13059-018-1603-1
- https://doi.org//10.1038/s41587-020-0511-6
- https://doi.org//10.1038/s41587-020-0442-2
- https://doi.org//10.1073/pnas.96.6.2976
- https://doi.org//10.1182/blood-2005-07-2965
- https://doi.org//10.1016/j.immuni.2013.08.009
- https://doi.org//10.1182/blood-2002-11-3355
- https://doi.org//10.4049/jimmunol.168.9.4531
- https://doi.org//10.4049/jimmunol.164.11.5998
- https://doi.org//10.1189/jlb.0708428
- https://doi.org//10.4049/jimmunol.168.2.554
- https://doi.org//10.4049/jimmunol.0901517
- https://doi.org//10.1007/s00125-010-1730-z
- https://doi.org//10.1016/j.celrep.2018.12.083
- https://doi.org//10.1073/pnas.1621192114
- https://doi.org//10.32614/rj-2016-021
- https://doi.org//10.1038/nbt.4096
- https://doi.org//10.1088/1742-5468/2008/10/P10008
- https://doi.org//10.1038/s41587-019-0071-9
Usage metrics
Read the peer-reviewed publication
Categories
- Transplantation Immunology
- Tumour Immunology
- Immunology not elsewhere classified
- Immunology
- Veterinary Immunology
- Animal Immunology
- Genetic Immunology
- Applied Immunology (incl. Antibody Engineering, Xenotransplantation and T-cell Therapies)
- Autoimmunity
- Cellular Immunology
- Humoural Immunology and Immunochemistry
- Immunogenetics (incl. Genetic Immunology)
- Innate Immunity