Table_1_Structure-Based Modeling of SARS-CoV-2 Peptide/HLA-A02 Antigens.XLSX
SARS-CoV-2-specific CD4 and CD8 T cells have been shown to be present in individuals with acute, mild, and asymptomatic Coronavirus disease (COVID-19). Toward the development of diagnostic and therapeutic tools to fight COVID-19, it is important to predict and characterize T cell epitopes expressed by SARS-CoV-2. Here, we use RosettaMHC, a comparative modeling approach which leverages existing structures of peptide/MHC complexes available in the Protein Data Bank, to derive accurate 3D models for putative SARS-CoV-2 CD8 epitopes. We outline an application of our method to model 8–10 residue epitopic peptides predicted to bind to the common allele HLA-A*02:01, and we make our models publicly available through an online database (https://rosettamhc.chemistry.ucsc.edu). We further compare electrostatic surfaces with models of homologous peptide/HLA-A*02:01 complexes from human common cold coronavirus strains to identify epitopes which may be recognized by a shared pool of cross-reactive TCRs. As more detailed studies on antigen-specific T cell recognition become available, RosettaMHC models can be used to understand the link between peptide/HLA complex structure and surface chemistry with immunogenicity, in the context of SARS-CoV-2 infection.
History
References
- https://doi.org//10.1021/acscentsci.0c00272
- https://doi.org//10.1186/ar1916
- https://doi.org//10.1016/j.antiviral.2010.11.007
- https://doi.org//10.1016/j.it.2016.08.010
- https://doi.org//10.1146/annurev-immunol-051116-052450
- https://doi.org//10.1038/s41591-020-0819-2
- https://doi.org//10.4049/jimmunol.1500046
- https://doi.org//10.1111/iji.12214
- https://doi.org//10.1074/jbc.M111.289488
- https://doi.org//10.1016/j.cell.2014.03.047
- https://doi.org//10.1146/annurev-immunol-082119-124838
- https://doi.org//10.1093/nar/gky1006
- https://doi.org//10.2174/1568026619666181224101744
- https://doi.org//10.1073/pnas.1018165108
- https://doi.org//10.1073/pnas.1321126111
- https://doi.org//10.1021/ci500393h
- https://doi.org//10.1093/bioinformatics/btx589
- https://doi.org//10.1371/journal.pcbi.1005614
- https://doi.org//10.1016/j.str.2013.08.005
- https://doi.org//10.1371/journal.pgen.1006862
- https://doi.org//10.1093/nar/28.1.235
- https://doi.org//10.1016/j.immuni.2009.11.003
- https://doi.org//10.1016/j.immuni.2009.12.002
- https://doi.org//10.1101/2020.05.04.20085779
- https://doi.org//10.21203/rs.3.rs-35331/v1
- https://doi.org//10.1038/nbt.3662
- https://doi.org//10.1126/sciimmunol.aau9039
- https://doi.org//10.1038/s41467-020-15710-1
- https://doi.org//10.4049/jimmunol.0901607
- https://doi.org//10.4049/jimmunol.1700893
- https://doi.org//10.1073/pnas.89.22.10915
- https://doi.org//10.1093/bioinformatics/btq007
- https://doi.org//10.1038/msb.2011.75
- https://doi.org//10.1016/j.jmb.2010.11.008
- https://doi.org//10.1002/prot.25167
- https://doi.org//10.1073/pnas.181342398
- https://doi.org//10.1002/qua.1204
- https://doi.org//10.1021/ct100578z
- https://doi.org//10.1021/ja00124a002
- https://doi.org//10.1002/qua.560320814
- https://doi.org//10.4049/jimmunol.1800683
- https://doi.org//10.1038/s41586-020-2008-3
- https://doi.org//10.1101/gr.229102
- https://doi.org//10.4049/jimmunol.1501721
- https://doi.org//10.1016/j.it.2017.07.011
- https://doi.org//10.1021/acs.jctc.7b00125
- https://doi.org//10.1093/nar/gkr859
- https://doi.org//10.1038/emi.2012.26
- https://doi.org//10.1016/j.chom.2020.03.002
- https://doi.org//10.1093/nar/gks469
- https://doi.org//10.1146/annurev.immunol.23.021704.115658
- https://doi.org//10.1146/annurev-immunol-032414-112334
- https://doi.org//10.1002/prot.25260
- https://doi.org//10.3389/fimmu.2019.02047
- https://doi.org//10.1038/s41586-020-2598-9
- https://doi.org//10.1016/j.cell.2020.05.015
- https://doi.org//10.1002/pro.3280
- https://doi.org//10.1101/2020.03.23.004176