Table_1_Salivary miRNA Expression in Children With Persistent Post-concussive Symptoms.pdf (782.49 kB)
Download file

Table_1_Salivary miRNA Expression in Children With Persistent Post-concussive Symptoms.pdf

Download (782.49 kB)
dataset
posted on 31.05.2022, 12:21 authored by Katherine E. Miller, James P. MacDonald, Lindsay Sullivan, Lakshmi Prakruthi Rao Venkata, Junxin Shi, Keith Owen Yeates, Su Chen, Enas Alshaikh, H. Gerry Taylor, Amanda Hautmann, Nicole Asa, Daniel M. Cohen, Thomas L. Pommering, Elaine R. Mardis, Jingzhen Yang, the NCH Concussion Research Group
Background

Up to one-third of concussed children develop persistent post-concussive symptoms (PPCS). The identification of biomarkers such as salivary miRNAs that detect concussed children at increased risk of PPCS has received growing attention in recent years. However, whether and how salivary miRNA expression levels differ over time between concussed children with and without PPCS is unknown.

Aim

To identify salivary MicroRNAs (miRNAs) whose expression levels differ over time post-concussion in children with vs. without PPCS.

Methods

We conducted a prospective cohort study with saliva collection at up to three timepoints: (1) within one week of injury; (2) one to two weeks post-injury; and (3) 4-weeks post-injury. Participants were children (ages 11 to 17 years) with a physician-diagnosed concussion from a single hospital center. We collected participants' daily post-concussion symptom ratings throughout their enrollment using the Post-concussion Symptom Scale, and defined PPCS as a total symptom score of ≥ 5 at 28 days post-concussion. We extracted salivary RNA from the saliva samples and measured expression levels of 827 salivary miRNAs. We then compared the longitudinal expression levels of salivary miRNAs in children with vs. without PPCS using linear models with repeated measures.

Results

A total of 135 saliva samples were collected from 60 children. Of the 827 miRNAs analyzed, 91 had expression levels above the calculated background threshold and were included in the differential gene expression analyses. Of these 91 miRNAs, 13 had expression levels that differed significantly across the three timepoints post-concussion between children with and without PPCS (i.e., hsa-miR-95-3p, hsa-miR-301a-5p, hsa-miR-626, hsa-miR-548y, hsa-miR-203a-5p, hsa-miR-548e-5p, hsa-miR-585-3p, hsa-miR-378h, hsa-miR-1323, hsa-miR-183-5p, hsa-miR-200a-3p, hsa-miR-888-5p, hsa-miR-199a-3p+hsa-miR-199b-3p). Among these 13 miRNAs, one (i.e., hsa-miR-203a-5p) was also identified in a prior study, with significantly different expression levels between children with and without PPCS.

Conclusion

Our results from the longitudinal assessment of miRNAs indicate that the expression levels of 13 salivary miRNAs differ over time post-injury in concussed children with vs. without PPCS. Salivary miRNAs may be a promising biomarker for PPCS in children, although replication studies are needed.

History

References