sorry, we can't preview this file

Table_1_SMART Cables for Observing the Global Ocean: Science and Implementation.docx (21.14 kB)

Table_1_SMART Cables for Observing the Global Ocean: Science and Implementation.docx

Download (21.14 kB)
dataset
posted on 02.08.2019, 04:11 by Bruce M. Howe, Brian K. Arbic, Jérome Aucan, Christopher R. Barnes, Nigel Bayliff, Nathan Becker, Rhett Butler, Laurie Doyle, Shane Elipot, Gregory C. Johnson, Felix Landerer, Stephen Lentz, Douglas S. Luther, Malte Müller, John Mariano, Kate Panayotou, Charlotte Rowe, Hiroshi Ota, Y. Tony Song, Maik Thomas, Preston N. Thomas, Philip Thompson, Frederik Tilmann, Tobias Weber, Stuart Weinstein

The ocean is key to understanding societal threats including climate change, sea level rise, ocean warming, tsunamis, and earthquakes. Because the ocean is difficult and costly to monitor, we lack fundamental data needed to adequately model, understand, and address these threats. One solution is to integrate sensors into future undersea telecommunications cables. This is the mission of the SMART subsea cables initiative (Science Monitoring And Reliable Telecommunications). SMART sensors would “piggyback” on the power and communications infrastructure of a million kilometers of undersea fiber optic cable and thousands of repeaters, creating the potential for seafloor-based global ocean observing at a modest incremental cost. Initial sensors would measure temperature, pressure, and seismic acceleration. The resulting data would address two critical scientific and societal issues: the long-term need for sustained climate-quality data from the under-sampled ocean (e.g., deep ocean temperature, sea level, and circulation), and the near-term need for improvements to global tsunami warning networks. A Joint Task Force (JTF) led by three UN agencies (ITU/WMO/UNESCO-IOC) is working to bring this initiative to fruition. This paper explores the ocean science and early warning improvements available from SMART cable data, and the societal, technological, and financial elements of realizing such a global network. Simulations show that deep ocean temperature and pressure measurements can improve estimates of ocean circulation and heat content, and cable-based pressure and seismic-acceleration sensors can improve tsunami warning times and earthquake parameters. The technology of integrating these sensors into fiber optic cables is discussed, addressing sea and land-based elements plus delivery of real-time open data products to end users. The science and business case for SMART cables is evaluated. SMART cables have been endorsed by major ocean science organizations, and JTF is working with cable suppliers and sponsors, multilateral development banks and end users to incorporate SMART capabilities into future cable projects. By investing now, we can build up a global ocean network of long-lived SMART cable sensors, creating a transformative addition to the Global Ocean Observing System.

History

References