Table_1_Genome-Wide Identification of Rare and Common Variants Driving Triglyceride Levels in a Nevada Population.XLSX
Clinical conditions correlated with elevated triglyceride levels are well-known: coronary heart disease, hypertension, and diabetes. Underlying genetic and phenotypic mechanisms are not fully understood, partially due to lack of coordinated genotypic-phenotypic data. Here we use a subset of the Healthy Nevada Project, a population of 9,183 sequenced participants with longitudinal electronic health records to examine consequences of altered triglyceride levels. Specifically, Healthy Nevada Project participants sequenced by the Helix Exome+ platform were cross-referenced to their electronic medical records to identify: (1) rare and common single-variant genome-wide associations; (2) gene-based associations using a Sequence Kernel Association Test; (3) phenome-wide associations with triglyceride levels; and (4) pleiotropic variants linked to triglyceride levels. The study identified 549 significant single-variant associations (p < 8.75 × 10–9), many in chromosome 11’s triglyceride hotspot: ZPR1, BUD13, APOC3, APOA5. A well-known protective loss-of-function variant in APOC3 (R19X) was associated with a 51% decrease in triglyceride levels in the cohort. Sixteen gene-based triglyceride associations were identified; six of these genes surprisingly did not include a single variant with significant associations. Results at the variant and gene level were validated with the UK Biobank. The combination of a single-variant genome-wide association, a gene-based association method, and phenome wide-association studies identified rare and common variants, genes, and phenotypes associated with elevated triglyceride levels, some of which may have been overlooked with standard approaches.
History
References
- https://doi.org//10.1172/JCI19992
- https://doi.org//10.1038/nprot.2010.116
- https://doi.org//10.1186/1471-2350-11-66
- https://doi.org//10.1186/s13073-015-0138-2
- https://doi.org//10.1161/CIRCULATIONAHA.117.029536
- https://doi.org//10.1038/ncomms11314
- https://doi.org//10.1002/jmd2.12081
- https://doi.org//10.1038/gim.2015.187
- https://doi.org//10.1093/bioinformatics/btu197
- https://doi.org//10.3945/ajcn.112.043240
- https://doi.org//10.1038/ng.970
- https://doi.org//10.1038/s41467-020-14288-y
- https://doi.org//10.1371/journal.pone.0051954
- https://doi.org//10.1016/j.ajhg.2013.04.025
- https://doi.org//10.1007/s00109-006-0147-0
- https://doi.org//10.1186/s12920-018-0387-1
- https://doi.org//10.1016/j.phrs.2007.04.016
- https://doi.org//10.1371/journal.pgen.1007079
- https://doi.org//10.2337/db19-1029
- https://doi.org//10.1161/CIRCULATIONAHA.110.948570
- https://doi.org//10.1194/jlr.M800527-JLR200
- https://doi.org//10.1007/s00125-019-05068-5
- https://doi.org//10.1038/nbt.2749
- https://doi.org//10.1007/s11883-017-0667-9
- https://doi.org//10.1101/gr.210500.116
- https://doi.org//10.1007/s11789-012-0042-x
- https://doi.org//10.1093/gerona/61.12.1262
- https://doi.org//10.1016/j.atherosclerosis.2014.03.010
- https://doi.org//10.3389/fgene.2019.01005
- https://doi.org//10.4070/kcj.2016.46.2.135
- https://doi.org//10.5339/gcsp.2014.38
- https://doi.org//10.1002/cncr.28875
- https://doi.org//10.1093/hmg/ddp361
- https://doi.org//10.1073/pnas.0903103106
- https://doi.org//10.2337/diabetes.51.9.2804
- https://doi.org//10.1534/genetics.118.301479
- https://doi.org//10.1038/s41588-018-0064-5
- https://doi.org//10.1038/srep32700
- https://doi.org//10.1152/physiolgenomics.00050.2008
- https://doi.org//10.1016/j.ajhg.2013.04.015
- https://doi.org//10.1038/ng.628
- https://doi.org//10.1056/NEJMoa1308027
- https://doi.org//10.1093/bioinformatics/btz469
- https://doi.org//10.1038/ng.291
- https://doi.org//10.1161/CIRCGENETICS.109.914267
- https://doi.org//10.1194/jlr.M039420
- https://doi.org//10.3389/fgene.2019.00736
- https://doi.org//10.1038/jhg.2010.27
- https://doi.org//10.1038/ng.1073
- https://doi.org//10.1096/fasebj.26.1_supplement.lb356
- https://doi.org//10.1371/journal.pone.0135145
- https://doi.org//10.2337/db10-1011
- https://doi.org//10.1016/j.ajhg.2012.06.007
- https://doi.org//10.1016/j.ajhg.2018.09.009
- https://doi.org//10.3389/fncel.2018.00084
- https://doi.org//10.1016/j.numecd.2007.06.003
- https://doi.org//10.1093/hmg/ddw261
- https://doi.org//10.1186/s12863-015-0299-4
- https://doi.org//10.1093/hmg/ddr296
- https://doi.org//10.1093/bioinformatics/btq559
- https://doi.org//10.1161/01.RES.0000124922.61830.F0
- https://doi.org//10.1021/acs.biochem.0c00132
- https://doi.org//10.1002/ajmg.a.38021
- https://doi.org//10.1194/jlr.r200015-jlr200
- https://doi.org//10.1186/1471-2350-12-123
- https://doi.org//10.1161/CIR.0b013e3182160726
- https://doi.org//10.1093/eurheartj/ehp161
- https://doi.org//10.1016/j.amjcard.2010.09.010
- https://doi.org//10.1186/s12933-016-0479-1
- https://doi.org//10.2310/JIM.0b013e31822467cd
- https://doi.org//10.1093/jn/131.10.2772S
- https://doi.org//10.1038/s41598-017-10812-1
- https://doi.org//10.1086/5197
- https://doi.org//10.1007/s00125-009-1290-2
- https://doi.org//10.1073/pnas.1815767116
- https://doi.org//10.1371/journal.pone.0218078
- https://doi.org//10.1002/sim.6605
- https://doi.org//10.1038/s41467-018-06159-4
- https://doi.org//10.1161/ATVBAHA.118.311476
- https://doi.org//10.1016/j.ajhg.2008.03.015
- https://doi.org//10.1016/j.tem.2018.09.007
- https://doi.org//10.1038/tp.2015.208
- https://doi.org//10.1038/s41366-018-0181-3
- https://doi.org//10.1534/g3.119.400910
- https://doi.org//10.1038/ng.784
- https://doi.org//10.1161/CIRCGEN.118.002239
- https://doi.org//10.1093/ije/dyaa050
- https://doi.org//10.1093/bioinformatics/btw373
- https://doi.org//10.1177/1947601911408082
- https://doi.org//10.1016/j.bbalip.2011.10.003
- https://doi.org//10.1038/nature09270
- https://doi.org//10.1056/NEJMoa1307095
- https://doi.org//10.3892/br.2015.484
- https://doi.org//10.1161/CIRCRESAHA.117.312086
- https://doi.org//10.1371/journal.pone.0197830
- https://doi.org//10.1101/572347
- https://doi.org//10.1161/ATVBAHA.109.201020
- https://doi.org//10.1136/jmedgenet-2012-101461
- https://doi.org//10.1097/MOL.0b013e328350fad2
- https://doi.org//10.1038/ng.76
- https://doi.org//10.1038/ng.2797
- https://doi.org//10.1038/ng.287
- https://doi.org//10.1038/s41586-019-1310-4
- https://doi.org//10.1016/j.ajhg.2011.05.029
- https://doi.org//10.3892/ijmm.2018.3943
- https://doi.org//10.4162/nrp.2015.9.4.379
- https://doi.org//10.1016/j.biopha.2020.110022
- https://doi.org//10.1371/journal.pone.0082420
- https://doi.org//10.1038/nbt.2835
Usage metrics
Read the peer-reviewed publication
Categories
- Gene and Molecular Therapy
- Biomarkers
- Genetics
- Genetically Modified Animals
- Developmental Genetics (incl. Sex Determination)
- Epigenetics (incl. Genome Methylation and Epigenomics)
- Gene Expression (incl. Microarray and other genome-wide approaches)
- Livestock Cloning
- Genome Structure and Regulation
- Genetic Engineering
- Genomics