Frontiers
Browse
Table_1_Assessing the Reliability of Template-Based Clustering for Tractography in Healthy Human Adults.XLSX (210.25 kB)

Table_1_Assessing the Reliability of Template-Based Clustering for Tractography in Healthy Human Adults.XLSX

Download (210.25 kB)
dataset
posted on 2022-02-17, 04:30 authored by Jason Kai, Ali R. Khan

Tractography is a non-invasive technique to investigate the brain’s structural pathways (also referred to as tracts) that connect different brain regions. A commonly used approach for identifying tracts is with template-based clustering, where unsupervised clustering is first performed on a template in order to label corresponding tracts in unseen data. However, the reliability of this approach has not been extensively studied. Here, an investigation into template-based clustering reliability was performed, assessing the output from two datasets: Human Connectome Project (HCP) and MyConnectome project. The effect of intersubject variability on template-based clustering reliability was investigated, as well as the reliability of both deep and superficial white matter tracts. Identified tracts were evaluated by assessing Euclidean distances from a dataset-specific tract average centroid, the volumetric overlap across corresponding tracts, and along-tract agreement of quantitative values. Further, two template-based techniques were employed to evaluate the reliability of different clustering approaches. Reliability assessment can increase the confidence of a tract identifying technique in future applications to study pathways of interest. The two different template-based approaches exhibited similar reliability for identifying both deep white matter tracts and the superficial white matter.

History

Usage metrics

    Frontiers in Neuroinformatics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC