Table1_CAD v1.0: Cancer Antigens Database Platform for Cancer Antigen Algorithm Development and Information Exploration.docx
Cancer vaccines have gradually attracted attention for their tremendous preclinical and clinical performance. With the development of next-generation sequencing technologies and related algorithms, pipelines based on sequencing and machine learning methods have become mainstream in cancer antigen prediction; of particular focus are neoantigens, mutation peptides that only exist in tumor cells that lack central tolerance and have fewer side effects. The rapid prediction and filtering of neoantigen peptides are crucial to the development of neoantigen-based cancer vaccines. However, due to the lack of verified neoantigen datasets and insufficient research on the properties of neoantigens, neoantigen prediction algorithms still need to be improved. Here, we recruited verified cancer antigen peptides and collected as much relevant peptide information as possible. Then, we discussed the role of each dataset for algorithm improvement in cancer antigen research, especially neoantigen prediction. A platform, Cancer Antigens Database (CAD, http://cad.bio-it.cn/), was designed to facilitate users to perform a complete exploration of cancer antigens online.
History
References
- https://doi.org//10.1016/j.canlet.2014.10.019
- https://doi.org//10.1093/nar/gkn673
- https://doi.org//10.1007/s00251-015-0873-y
- https://doi.org//10.1093/nar/gkz874
- https://doi.org//10.1038/nature24462
- https://doi.org//10.1093/nar/gkaa1100
- https://doi.org//10.1034/j.1399-0039.2003.00112.x
- https://doi.org//10.1158/0008-5472.CAN-11-3722
- https://doi.org//10.3892/or.2015.3820
- https://doi.org//10.1073/pnas.1500973112
- https://doi.org//10.1097/00000658-189307000-00009
- https://doi.org//10.1186/s13073-019-0642-x
- https://doi.org//10.1080/08923973.2018.1498099
- https://doi.org//10.1016/j.cell.2017.11.043
- https://doi.org//10.1007/978-1-0716-0327-7_13
- https://doi.org//10.1038/nature13988
- https://doi.org//10.1056/nejmoa1003466
- https://doi.org//10.1158/2326-6066.CIR-19-0401
- https://doi.org//10.1111/imm.12889
- https://doi.org//10.1186/s13045-019-0787-5
- https://doi.org//10.1371/journal.pcbi.1008814
- https://doi.org//10.1038/s41586-018-0792-9
- https://doi.org//10.1093/annonc/mdy022
- https://doi.org//10.3389/fimmu.2021.735609
- https://doi.org//10.1038/mt.2016.122
- https://doi.org//10.1089/gtmb.2018.0211
- https://doi.org//10.1126/scitranslmed.aau5516
- https://doi.org//10.1093/annonc/mdx681
- https://doi.org//10.1016/j.omtn.2017.07.011
- https://doi.org//10.1038/s41598-018-33933-7
- https://doi.org//10.1038/nature24473
- https://doi.org//10.1016/j.tibtech.2006.10.001
- https://doi.org//10.1093/nar/gkn202
- https://doi.org//10.1093/bioinformatics/btn128
- https://doi.org//10.1038/s42003-021-02610-3
- https://doi.org//10.1186/1471-2105-10-296
- https://doi.org//10.1110/ps.0239403
- https://doi.org//10.1371/journal.pone.0000796
- https://doi.org//10.1186/1471-2105-8-238
- https://doi.org//10.1038/nature22991
- https://doi.org//10.1016/j.cell.2020.08.053
- https://doi.org//10.1186/s12943-019-1055-6
- https://doi.org//10.1186/1471-2105-6-132
- https://doi.org//10.4049/jimmunol.171.4.1741
- https://doi.org//10.1038/s41586-021-03363-z
- https://doi.org//10.1158/0008-5472.CAN-16-2946
- https://doi.org//10.1158/2326-6066.CIR-14-0206
- https://doi.org//10.1093/NAR/GKAA379
- https://doi.org//10.3389/fimmu.2019.02047
- https://doi.org//10.1056/nejmoa1503093
- https://doi.org//10.1038/nature23003
- https://doi.org//10.1073/pnas.1707658114
- https://doi.org//10.1093/nar/gkx664
- https://doi.org//10.1093/nar/29.1.308
- https://doi.org//10.1186/1745-7580-4-2
- https://doi.org//10.1016/j.jbi.2014.11.003
- https://doi.org//10.1038/9858
- https://doi.org//10.1093/database/baaa004
- https://doi.org//10.1007/s00018-005-4528-2
- https://doi.org//10.1146/annurev-immunol-042617-053035
- https://doi.org//10.1093/nar/gky1006
- https://doi.org//10.1371/journal.pcbi.1000048
- https://doi.org//10.1186/1471-2105-11-568
- https://doi.org//10.1155/2020/5798356
- https://doi.org//10.1093/bioinformatics/btz653
- https://doi.org//10.2174/0929866524666170419152700
- https://doi.org//10.1016/j.gpb.2018.06.003
- https://doi.org//10.3389/fimmu.2021.644637
- https://doi.org//10.1016/B978-1-4832-3211-9.50009-7
- https://doi.org//10.1158/2326-6066.CIR-16-0264
- https://doi.org//10.1186/s12859-021-03962-7
- https://doi.org//10.1016/j.biopha.2017.03.015
- https://doi.org//10.1186/s13073-019-0679-x
- https://doi.org//10.1093/database/baz128
- https://doi.org//10.1126/scitranslmed.aad7118.PD-L1
Usage metrics
Read the peer-reviewed publication
Categories
- Agricultural Marine Biotechnology
- Biomaterials
- Biomechanical Engineering
- Biotechnology
- Biomarkers
- Biomedical Engineering not elsewhere classified
- Synthetic Biology
- Bioremediation
- Bioprocessing, Bioproduction and Bioproducts
- Industrial Biotechnology Diagnostics (incl. Biosensors)
- Industrial Microbiology (incl. Biofeedstocks)
- Industrial Molecular Engineering of Nucleic Acids and Proteins
- Industrial Biotechnology not elsewhere classified
- Medical Biotechnology Diagnostics (incl. Biosensors)
- Biological Engineering
- Medical Molecular Engineering of Nucleic Acids and Proteins
- Regenerative Medicine (incl. Stem Cells and Tissue Engineering)
- Medical Biotechnology not elsewhere classified
- Genetic Engineering