Data_Sheet_4_Integrative Single-Cell Transcriptomic Analysis of Human Fetal Thymocyte Development.PDF
Intrathymic differentiation of T lymphocytes begins as early as intrauterine stage, yet the T cell lineage decisions of human fetal thymocytes at different gestational ages are not currently understood. Here, we performed integrative single-cell analyses of thymocytes across gestational ages. We identified conserved candidates underlying the selection of T cell receptor (TCR) lineages in different human fetal stages. The trajectory of early thymocyte commitment during fetal growth was also characterized. Comparisons with mouse data revealed conserved and species-specific transcriptional dynamics of thymocyte proliferation, apoptosis and selection. Genome-wide association study (GWAS) data associated with multiple autoimmune disorders were analyzed to characterize susceptibility genes that are highly expressed at specific stages during fetal thymocyte development. In summary, our integrative map describes previously underappreciated aspects of human thymocyte development, and provides a comprehensive reference for understanding T cell lymphopoiesis in a self-tolerant and functional adaptive immune system.
History
References
- https://doi.org//10.1186/s13059-016-0927-y
- https://doi.org//10.3389/fimmu.2018.02523
- https://doi.org//10.1146/annurev-immunol-042718-041728
- https://doi.org//10.1172/JCI26471
- https://doi.org//10.1242/dev.152561
- https://doi.org//10.1093/nar/gky1120
- https://doi.org//10.1038/nbt.4096
- https://doi.org//10.4049/jimmunol.179.1.103
- https://doi.org//10.1101/gad.4.8.1304
- https://doi.org//10.1172/JCI23087
- https://doi.org//10.1016/j.immuni.2020.10.024
- https://doi.org//10.1038/nri2820
- https://doi.org//10.1146/annurev.immunol.17.1.89
- https://doi.org//10.1038/s41467-018-03282-0
- https://doi.org//10.1038/s41467-020-19894-4
- https://doi.org//10.1016/j.celrep.2019.01.079
- https://doi.org//10.1016/j.devcel.2009.01.014
- https://doi.org//10.1186/s13059-020-02048-6
- https://doi.org//10.1016/j.celrep.2019.09.082
- https://doi.org//10.1084/jem.20042524
- https://doi.org//10.1038/ni.3437
- https://doi.org//10.1038/s41422-018-0053-3
- https://doi.org//10.1242/dev.087320
- https://doi.org//10.1038/s41556-018-0105-4
- https://doi.org//10.1016/j.immuni.2006.01.008
- https://doi.org//10.1186/s13059-019-1874-1
- https://doi.org//10.1038/nbt.4091
- https://doi.org//10.1007/s00018-014-1607-2
- https://doi.org//10.1038/s41586-020-2157-4
- https://doi.org//10.1084/jem.20142207
- https://doi.org//10.1186/s12864-020-6755-1
- https://doi.org//10.1016/j.ceb.2010.08.003
- https://doi.org//10.1038/s41587-019-0113-3
- https://doi.org//10.1186/s13059-016-0888-1
- https://doi.org//10.1101/gr.110882.110
- https://doi.org//10.1242/dev.083147
- https://doi.org//10.1016/j.immuni.2018.04.015
- https://doi.org//10.1038/nri3389
- https://doi.org//10.1016/j.immuni.2009.07.010
- https://doi.org//10.1016/j.immuni.2020.03.019
- https://doi.org//10.1016/j.immuni.2020.05.010
- https://doi.org//10.1016/j.stem.2017.03.007
- https://doi.org//10.1182/blood-2007-09-114181
- https://doi.org//10.1038/nri1633
- https://doi.org//10.1038/ni.2590
- https://doi.org//10.1126/science.1196509
- https://doi.org//10.1002/uog.13448
- https://doi.org//10.1126/science.aay3224
- https://doi.org//10.4161/cc.9.4.10673
- https://doi.org//10.1038/nmeth.4402
- https://doi.org//10.4049/jimmunol.167.11.6270
- https://doi.org//10.1084/jem.188.10.1817
- https://doi.org//10.15252/embj.2019104159
- https://doi.org//10.1016/j.stem.2015.11.004
- https://doi.org//10.1146/annurev-immunol-100219-020937
- https://doi.org//10.1093/emboj/17.18.5349
- https://doi.org//10.1038/nri913
- https://doi.org//10.1146/annurev.immunol.21.120601.141107
- https://doi.org//10.1016/j.cell.2019.05.031
- https://doi.org//10.1038/nmeth.4220
- https://doi.org//10.1097/01.gim.0000117333.21213.17
- https://doi.org//10.1007/s00281-008-0134-3
- https://doi.org//10.1038/ni1486
- https://doi.org//10.1146/annurev-immunol-042617-053411
- https://doi.org//10.1182/blood.v79.3.666.bloodjournal793666
- https://doi.org//10.1126/science.aad0501
- https://doi.org//10.1038/s41598-019-41695-z
- https://doi.org//10.1186/s13059-019-1850-9
- https://doi.org//10.1126/sciimmunol.aah4232
- https://doi.org//10.1038/mi.2008.84
- https://doi.org//10.1016/j.celrep.2018.08.056
- https://doi.org//10.1038/nri3690
- https://doi.org//10.1084/jem.20170518
- https://doi.org//10.1016/s0092-8674%2802%2901250-3
- https://doi.org//10.1101/303727
- https://doi.org//10.1089/omi.2011.0118
- https://doi.org//10.1016/j.immuni.2019.09.008
- https://doi.org//10.1038/ncomms14049
- https://doi.org//10.1038/nature25980
Usage metrics
Read the peer-reviewed publication
Categories
- Gene and Molecular Therapy
- Gene Expression (incl. Microarray and other genome-wide approaches)
- Genetics
- Genetically Modified Animals
- Livestock Cloning
- Developmental Genetics (incl. Sex Determination)
- Epigenetics (incl. Genome Methylation and Epigenomics)
- Biomarkers
- Genomics
- Genome Structure and Regulation
- Genetic Engineering