Data_Sheet_4_DCST1-AS1 Promotes TGF-β-Induced Epithelial–Mesenchymal Transition and Enhances Chemoresistance in Triple-Negative Breast Cancer Cells via ANXA1.PDF
Triple-negative breast cancer (TNBC) is a highly metastatic breast cancer subtype, and the primary systemic treatment strategy involves conventional chemotherapy. DC-STAMP domain containing 1-antisense 1 (DCST1-AS1) is a long non-coding RNA that promotes TNBC migration and invasion. Studying the role of DCST1-AS1 in promoting epithelial–mesenchymal transition (EMT) and chemoresistance will provide a new strategy for TNBC therapy. In the present study, we found that DCST1-AS1 regulates the expression or secretion of EMT-related proteins E-cadherin, snail family zinc finger 1 (SNAI1), vimentin, matrix metallopeptidase 2 (MMP2), and matrix metallopeptidase 9 (MMP9). Interference with DCST1-AS1 impaired TGF-β-induced TNBC cell invasion and migration. DCST1-AS1 directly binds to ANXA1 in BT-549 cells and affects the expression of ANXA1. DCST1-AS1 enhances TGF-β/Smad signaling in BT-549 cells through ANXA1 to promote EMT. The combination of DCST1-AS1 and ANXA1 also contributes to enhancement of the resistance of BT-549 cells to doxorubicin and paclitaxel. In conclusion, DCST1-AS1 promotes TGF-β-induced EMT and enhances chemoresistance in TNBC cells through ANXA1, and therefore represents a potentially promising target for metastatic breast cancer therapy.
History
References
- https://doi.org//10.1093/annonc/mdt303
- https://doi.org//10.1016/j.ctrv.2019.01.007
- https://doi.org//10.1016/S0140-6736(16)32417-5
- https://doi.org//10.1038/modpathol.2010.200
- https://doi.org//10.3390/cancers11040559
- https://doi.org//10.1161/CIRCULATIONAHA.118.039345
- https://doi.org//10.3390/ijms19041045
- https://doi.org//10.2217/fon.13.114
- https://doi.org//10.4048/jbc.2011.14.4.262
- https://doi.org//10.1186/s12916-015-0392-6
- https://doi.org//10.7150/jca.33982
- https://doi.org//10.1073/pnas.0913360107
- https://doi.org//10.1002/path.5225
- https://doi.org//10.1002/jcp.24780
- https://doi.org//10.1111/j.1349-7006.2009.01419.x
- https://doi.org//10.3390/cancers11050726
- https://doi.org//10.1038/nrm.2016.26
- https://doi.org//10.20892/j.issn.2095-3941.2018.0012
- https://doi.org//10.1155/2014/141747
- https://doi.org//10.4161/cam.26728
- https://doi.org//10.1038/s41598-018-23733-4
- https://doi.org//10.1038/s41556-018-0268-z
- https://doi.org//10.1158/1078-0432.CCR-17-1776
- https://doi.org//10.1038/s41419-019-1397-4
- https://doi.org//10.1002/ijc.21989
- https://doi.org//10.1007/s10549-010-1147-x
- https://doi.org//10.1016/j.bbrc.2012.05.114
- https://doi.org//10.1074/mcp.M111.011205
- https://doi.org//10.1186/s13058-017-0924-4
- https://doi.org//10.1038/onc.2011.28
- https://doi.org//10.1007/s13277-016-5306-5
- https://doi.org//10.1038/s41419-018-1204-7
- https://doi.org//10.1002/1878-0261.12094
- https://doi.org//10.1038/s41467-018-04936-9
- https://doi.org//10.1186/s13045-018-0628-y
- https://doi.org//10.1038/s41419-019-1513-5
- https://doi.org//10.1016/j.biopha.2019.108869
- https://doi.org//10.1016/j.taap.2018.09.018
- https://doi.org//10.1158/0008-5472.CAN-15-3284
- https://doi.org//10.1016/j.bbrc.2018.09.140
- https://doi.org//10.3892/or.2016.5234
- https://doi.org//10.7314/APJCP.2014.15.7.3191
- https://doi.org//10.1016/j.bbrc.2003.12.117
- https://doi.org//10.1021/pr100478u
- https://doi.org//10.1158/1078-0432.CCR-17-2967
- https://doi.org//10.1016/j.tcb.2017.11.008
- https://doi.org//10.1016/j.bbagrm.2019.04.005
- https://doi.org//10.3389/fonc.2019.00407
- https://doi.org//10.3389/fonc.2019.00672
- https://doi.org//10.1038/s41580-018-0080-4