Data_Sheet_1_Transition Bimetal Based MOF Nanosheets for Robust Aqueous Zn Battery.DOCX
High-performance, good stability, low-cost, and environmentally friendly batteries are important for multifunctional electronics and electric vehicles. Compared with the high-energy density lithium-ion batteries, aqueous rechargeable battery has been extensively researched due to high safety, low cost and much better rate performance. Here, we report a one-step approach to fabricate porous Ni-Cu metal–organic framework (MOF) nanosheet arrays structures for stable energy storage with a high-energy (71.2 mWh cm−3) and high-stability (capacity retention of ≈91% after 2,500 cycles) performance. Furthermore, we synthesized various porous homogeneous Ni-Co, Ni-Zn, Ni-Fe and Ni-Mn bimetal MOF structures with high surface area and conductivity utilizing this rational design. This work provides a simple efficient strategy for constructing porous homogeneous bimetal MOF nanosheet arrays with high energy and stability performance, holding a great potential for future portable electronics.
History
References
- https://doi.org//10.1126/science.1246501
- https://doi.org//10.1021/ja4064475
- https://doi.org//10.1021/jacs.5b00281
- https://doi.org//10.1021/nn5027092
- https://doi.org//10.1038/natrevmats.2017.75
- https://doi.org//10.1016/j.nanoen.2016.07.034
- https://doi.org//10.1002/adma.201805230
- https://doi.org//10.1021/acsami.8b05891
- https://doi.org//10.1039/c4ee00317a
- https://doi.org//10.1002/aenm.201602391
- https://doi.org//10.1002/aenm.201601034
- https://doi.org//10.1021/am403367u
- https://doi.org//10.1016/j.ensm.2017.12.016
- https://doi.org//10.1021/acsnano.7b03322
- https://doi.org//10.1039/c3cs60177c
- https://doi.org//10.1021/acsnano.5b03732
- https://doi.org//10.1038/46248
- https://doi.org//10.1002/adfm.201504312
- https://doi.org//10.1021/acsami.5b06698
- https://doi.org//10.1073/pnas.1620787114
- https://doi.org//10.1002/adfm.201502265
- https://doi.org//10.1002/adfm.201909546
- https://doi.org//10.1002/adma.201603038
- https://doi.org//10.1021/ic402106v
- https://doi.org//10.1038/nenergy.2016.39
- https://doi.org//10.1002/adfm.201706008
- https://doi.org//10.1038/nmat4766
- https://doi.org//10.1021/acsenergylett.9b00510
- https://doi.org//10.1021/acs.inorgchem.5b01278
- https://doi.org//10.1002/adfm.201703933
- https://doi.org//10.1002/adfm.201603125
- https://doi.org//10.1021/acscatal.7b03795
- https://doi.org//10.1002/adfm.201802157
- https://doi.org//10.1002/adma.201505370
- https://doi.org//10.1002/anie.201803587
- https://doi.org//10.1002/adfm.201601811
- https://doi.org//10.1002/smtd.201900540
- https://doi.org//10.1002/aenm.201900149
- https://doi.org//10.1002/smll.201604270
- https://doi.org//10.1002/cey2.22
- https://doi.org//10.1021/ja00146a033
- https://doi.org//10.1021/nn500497k
- https://doi.org//10.1002/adfm.201703455
- https://doi.org//10.1038/nnano.2014.93
- https://doi.org//10.1002/adfm.201200994
- https://doi.org//10.1002/adma.201706640
- https://doi.org//10.1038/nenergy.2016.184