Data_Sheet_1_Transcriptomic Analysis of Resistant and Susceptible Responses in a New Model Root-Knot Nematode Infection System Using Solanum torvum and Meloidogyne arenaria.PDF
Root-knot nematodes (RKNs) are among the most devastating pests in agriculture. Solanum torvum Sw. (Turkey berry) has been used as a rootstock for eggplant (aubergine) cultivation because of its resistance to RKNs, including Meloidogyne incognita and M. arenaria. We previously found that a pathotype of M. arenaria, A2-J, is able to infect and propagate in S. torvum. In vitro infection assays showed that S. torvum induced the accumulation of brown pigments during avirulent pathotype A2-O infection, but not during virulent A2-J infection. This experimental system is advantageous because resistant and susceptible responses can be distinguished within a few days, and because a single plant genome can yield information about both resistant and susceptible responses. Comparative RNA-sequencing analysis of S. torvum inoculated with A2-J and A2-O at early stages of infection was used to parse the specific resistance and susceptible responses. Infection with A2-J did not induce statistically significant changes in gene expression within one day post-inoculation (DPI), but afterward, A2-J specifically induced the expression of chalcone synthase, spermidine synthase, and genes related to cell wall modification and transmembrane transport. Infection with A2-O rapidly induced the expression of genes encoding class III peroxidases, sesquiterpene synthases, and fatty acid desaturases at 1 DPI, followed by genes involved in defense, hormone signaling, and the biosynthesis of lignin at 3 DPI. Both isolates induced the expression of suberin biosynthetic genes, which may be triggered by wounding during nematode infection. Histochemical analysis revealed that A2-O, but not A2-J, induced lignin accumulation at the root tip, suggesting that physical reinforcement of cell walls with lignin is an important defense response against nematodes. The S. torvum-RKN system can provide a molecular basis for understanding plant-nematode interactions.
History
References
- https://doi.org//10.1007/s00709-011-0302-5
- https://doi.org//10.1007/s00425-011-1509-6
- https://doi.org//10.1186/1471-2164-14-540
- https://doi.org//10.1186/s12864-019-6257-1
- https://doi.org//10.1186/s12934-016-0415-9
- https://doi.org//10.1111/nph.14140
- https://doi.org//10.1093/jxb/ert415
- https://doi.org//10.1002/dvg.22877
- https://doi.org//10.1016/S0031-9422(98)80052-6
- https://doi.org//10.3389/fpls.2014.00089
- https://doi.org//10.1104/pp.15.00672
- https://doi.org//10.1146/annurev-phyto-080614-120106
- https://doi.org//10.1038/s41598-018-35529-7
- https://doi.org//10.1016/S2095-3119(19)62817-0
- https://doi.org//10.1105/tpc.105.031542
- https://doi.org//10.3390/ijms19020429
- https://doi.org//10.1186/1471-2229-13-5
- https://doi.org//10.1007/s00299-007-0304-0
- https://doi.org//10.1104/pp.112.213546
- https://doi.org//10.1104/pp.111.176230
- https://doi.org//10.1023/a%3A1010639225091
- https://doi.org//10.1038/35030000
- https://doi.org//10.1093/jxb/ern318
- https://doi.org//10.1074/jbc.M115.659631
- https://doi.org//10.1007/s11101-011-9211-7
- https://doi.org//10.1111/j.1469-8137.2012.04238.x
- https://doi.org//10.1104/pp.58.3.411
- https://doi.org//10.1038/nrg2812
- https://doi.org//10.1186/s12864-020-6654-5
- https://doi.org//10.1016/j.plaphy.2013.05.016
- https://doi.org//10.1104/pp.16.01108
- https://doi.org//10.1073/pnas.89.22.11088
- https://doi.org//10.1104/pp.98.3.995
- https://doi.org//10.1016/j.phytochem.2005.09.027
- https://doi.org//10.1016/j.chom.2020.11.014
- https://doi.org//10.1094/MPMI-10-14-0320-R
- https://doi.org//10.1111/ppa.13036
- https://doi.org//10.1111/ppa.13092
- https://doi.org//10.1186/s12870-020-02706-8
- https://doi.org//10.1094/MPMI-09-19-0262-R
- https://doi.org//10.1093/nar/gkn176
- https://doi.org//10.1016/j.plantsci.2004.07.034
- https://doi.org//10.1038/nbt.1883
- https://doi.org//10.1104/pp.111.182931
- https://doi.org//10.1038/nprot.2013.084
- https://doi.org//10.1094/MPMI-18-1247
- https://doi.org//10.1104/pp.109.150557
- https://doi.org//10.1111/tpj.14459
- https://doi.org//10.1093/jxb/erw005
- https://doi.org//10.1007/s00438-012-0696-6
- https://doi.org//10.1111/mpp.12316
- https://doi.org//10.1186/s12864-015-1426-3
- https://doi.org//10.1371/journal.pone.0064586
- https://doi.org//10.1104/pp.106.089615
- https://doi.org//10.1016/j.cell.2019.11.037
- https://doi.org//10.1094/MPMI-09-14-0260-R
- https://doi.org//10.1038/nature05286
- https://doi.org//10.1111/mpp.12057
- https://doi.org//10.1093/bioinformatics/btu031
- https://doi.org//10.1111/mpp.12622
- https://doi.org//10.1038/s41587-019-0201-4
- https://doi.org//10.1093/jxb/erv533
- https://doi.org//10.3389/fpls.2012.00202
- https://doi.org//10.1104/pp.19.00487
- https://doi.org//10.1111/j.1469-8137.2011.04047.x
- https://doi.org//10.1111/ppl.12315
- https://doi.org//10.1007/s11240-015-0815-2
- https://doi.org//10.1146/annurev-phyto-080516-035406
- https://doi.org//10.1016/j.plantsci.2014.08.001
- https://doi.org//10.3390/molecules21101276
- https://doi.org//10.5511/plantbiotechnology.24.117
- https://doi.org//10.1093/jxb/ern019
- https://doi.org//10.1016/S0885-5765(03)00076-6
- https://doi.org//10.1038/s41598-017-09334-7
- https://doi.org//10.1038/ncomms8795
- https://doi.org//10.15252/embj.2018100972
- https://doi.org//10.1093/jxb/ern278
- https://doi.org//10.3390/ijms20215465
- https://doi.org//10.3389/fpls.2019.00970
- https://doi.org//10.3389/fpls.2014.00358
- https://doi.org//10.1105/tpc.10.8.1307
- https://doi.org//10.1111/j.1364-3703.2004.00216.x
- https://doi.org//10.1111/jph.12966
- https://doi.org//10.1104/pp.18.01133
- https://doi.org//10.1371/journal.pone.0091776
- https://doi.org//10.1105/tpc.7.7.957
- https://doi.org//10.1163/156854101750236286
- https://doi.org//10.3390/agronomy10091387
- https://doi.org//10.1094/MPMI.2004.17.9.1009
- https://doi.org//10.1111/j.1365-313X.2004.02047.x
- https://doi.org//10.3389/fpls.2017.01987
- https://doi.org//10.1038/nmeth.4197
- https://doi.org//10.1371/journal.pone.0118269
- https://doi.org//10.1042/0264-6021%3A3560387
- https://doi.org//10.1006/abbi.2001.2483
- https://doi.org//10.1104/pp.113.234864
- https://doi.org//10.1104/pp.114.244871
- https://doi.org//10.1093/bioinformatics/btp616
- https://doi.org//10.1128/genomeA.00519-18
- https://doi.org//10.3389/fpls.2019.01165
- https://doi.org//10.1093/bioinformatics/bts094
- https://doi.org//10.1111/nph.13738
- https://doi.org//10.1111/mpp.12547
- https://doi.org//10.1016/j.mib.2018.09.004
- https://doi.org//10.1111/j.1365-313X.1991.00245.x
- https://doi.org//10.1093/bioinformatics/btv351
- https://doi.org//10.1111/tpj.13811
- https://doi.org//10.12688/f1000research.7563.2
- https://doi.org//10.1093/jxb/erz327
- https://doi.org//10.1007/BF00339718
- https://doi.org//10.1007/s12374-014-0407-4
- https://doi.org//10.1093/pcp/pcp173
- https://doi.org//10.1074/jbc.M703378200
- https://doi.org//10.1104/pp.106.091090
- https://doi.org//10.1111/jph.12594
- https://doi.org//10.1104/pp.110.155119
- https://doi.org//10.1105/tpc.112.102574
- https://doi.org//10.1016/j.jplph.2018.07.013
- https://doi.org//10.1007/s00299-014-1727-z
- https://doi.org//10.1104/pp.88.4.1291
- https://doi.org//10.1186/1471-2229-13-94
- https://doi.org//10.1186/1471-2229-12-157
- https://doi.org//10.1139/b74-324
- https://doi.org//10.18637/jss.v021.i05
- https://doi.org//10.1093/bioinformatics/btu077
- https://doi.org//10.1016/j.bbrc.2016.11.167
- https://doi.org//10.1093/jxb/erp313
- https://doi.org//10.1371/journal.pgen.1003964
- https://doi.org//10.1186/1471-2164-15-412
- https://doi.org//10.1016/j.jplph.2017.02.002
- https://doi.org//10.1146/annurev-phyto-073009-114425
- https://doi.org//10.1101/gr.074492.107
- https://doi.org//10.1038/s41598-017-09945-0
- https://doi.org//10.3389/fpls.2017.01087
- https://doi.org//10.3389/fpls.2018.01065
- https://doi.org//10.1093/jxb/erv221