Data_Sheet_1_The APC/CFZY–1/Cdc20 Complex Coordinates With OMA-1 to Regulate the Oocyte-to-Embryo Transition in Caenorhabditis elegans.PDF
During oocyte maturation and the oocyte-to-embryo transition, key developmental regulators such as RNA-binding proteins coordinate translation of particular messenger RNA (mRNAs) and related developmental processes by binding to their cognate maternal mRNAs. In the nematode Caenorhabditis elegans, these processes are regulated by a set of CCCH zinc finger proteins. Oocyte maturation defective-1 (OMA-1) and OMA-2 are two functionally redundant CCCH zinc finger proteins that turnover rapidly during the first embryonic cell division. These turnovers are required for proper transition from oogenesis to embryogenesis. A gain-of-function mutant of OMA-1, oma-1(zu405), stabilizes and delays degradation of OMA-1, resulting in delayed turnover and mis-segregation of other cell fate determinants, which eventually causes embryonic lethality. We performed a large-scale forward genetic screen to identify suppressors of the oma-1(zu405) mutant. We show here that multiple alleles affecting functions of various anaphase promoting complex/cyclosome (APC/C) subunits, including MAT-1, MAT-2, MAT-3, EMB-30, and FZY-1, suppress the gain-of-function mutant of OMA-1. Transcriptome analysis suggested that overall transcription in early embryos occurred after introducing mutations in APC/C genes into the oma-1(zu405) mutant. Mutations in APC/C genes prevent OMA-1 enrichment in P granules and correct delayed degradation of downstream cell fate determinants including pharynx and intestine in excess-1 (PIE-1), posterior segregation-1 (POS-1), muscle excess-3 (MEX-3), and maternal effect germ-cell defective-1 (MEG-1). We demonstrated that only the activator FZY-1, but not FZR-1, is incorporated in the APC/C complex to regulate the oocyte-to-embryo transition. Our findings suggested a genetic relationship linking the APC/C complex and OMA-1, and support a model in which the APC/C complex promotes P granule accumulation and modifies RNA binding of OMA-1 to regulate the oocyte-to-embryo transition process.
History
References
- https://doi.org//10.1093/bioinformatics/btu638
- https://doi.org//10.1038/s41467-021-21278-1
- https://doi.org//10.1093/emboj/19.15.3945
- https://doi.org//10.1038/nature13543
- https://doi.org//10.1007/978-1-60327-214-8_1
- https://doi.org//10.1038/nature01887
- https://doi.org//10.1146/annurev.cellbio.15.1.435
- https://doi.org//10.1016/s1534-5807(01)00026-0
- https://doi.org//10.1038/nmeth.2641
- https://doi.org//10.1534/genetics.118.301532
- https://doi.org//10.1016/j.molcel.2005.11.008
- https://doi.org//10.1016/0092-8674(86)90009-7
- https://doi.org//10.1016/s1097-2765(00)80126-4
- https://doi.org//10.1098/rstb.1999.0502
- https://doi.org//10.1261/rna.1256708
- https://doi.org//10.1080/10409230801921338
- https://doi.org//10.1101/gad.952302
- https://doi.org//10.1091/mbc.11.4.1401
- https://doi.org//10.1534/genetics.103.026021
- https://doi.org//10.1186/s12859-018-2486-6
- https://doi.org//10.1083/jcb.151.7.1469
- https://doi.org//10.1016/j.cell.2008.07.040
- https://doi.org//10.1242/dev.055327
- https://doi.org//10.1101/gad.1013102
- https://doi.org//10.1126/science.1163300
- https://doi.org//10.1242/dev.013656
- https://doi.org//10.1016/s0092-8674(00)81605-0
- https://doi.org//10.1074/jbc.M113.496547
- https://doi.org//10.1038/s41587-019-0201-4
- https://doi.org//10.1016/s0960-9822(02)01392-1
- https://doi.org//10.1101/sqb.2017.82.033712
- https://doi.org//10.7554/eLife.52896
- https://doi.org//10.1895/wormbook.1.79.1
- https://doi.org//10.1016/s0012-1606(03)00119-2
- https://doi.org//10.1006/excr.1999.4788
- https://doi.org//10.1186/s13059-014-0550-8
- https://doi.org//10.1083/jcb.200607070
- https://doi.org//10.1006/dbio.2000.0120
- https://doi.org//10.1534/genetics.112.144204
- https://doi.org//10.1126/science.1111443
- https://doi.org//10.1016/0092-8674(82)90272-0
- https://doi.org//10.1083/jcb.200802128
- https://doi.org//10.1007/978-3-319-60855-6_9
- https://doi.org//10.1242/dev.096313
- https://doi.org//10.1242/dev.186817
- https://doi.org//10.1042/BST0320724
- https://doi.org//10.1016/j.molcel.2005.11.003
- https://doi.org//10.1371/journal.pgen.0030202
- https://doi.org//10.1016/s1097-2765(02)00540-3
- https://doi.org//10.1038/nrm1988
- https://doi.org//10.1016/j.tcb.2005.11.006
- https://doi.org//10.1038/nrm3132
- https://doi.org//10.1038/sj.emboj.7600186
- https://doi.org//10.1006/dbio.1996.0232
- https://doi.org//10.1083/jcb.201301130
- https://doi.org//10.1016/j.bbagrm.2008.02.002
- https://doi.org//10.1016/s1534-5807(02)00114-4
- https://doi.org//10.1016/bs.ctdb.2015.06.001
- https://doi.org//10.1016/j.scr.2017.04.008
- https://doi.org//10.1895/wormbook.1.30.2
- https://doi.org//10.1038/onc.2009.170
- https://doi.org//10.1126/science.1140693
- https://doi.org//10.1242/dev.00385
- https://doi.org//10.1111/j.1365-2443.2006.00945.x
- https://doi.org//10.1016/j.cub.2005.11.070
- https://doi.org//10.1534/genetics.114.168823
- https://doi.org//10.1242/dev.02784
- https://doi.org//10.1006/dbio.1998.8940
- https://doi.org//10.1101/gad.876201
- https://doi.org//10.1038/27579
- https://doi.org//10.1534/genetics.117.203174
- https://doi.org//10.1038/nsmb.2412
- https://doi.org//10.1016/j.ceb.2010.09.003
- https://doi.org//10.1007/978-1-4614-4015-4_2
- https://doi.org//10.1371/journal.pbio.1001648
- https://doi.org//10.1016/j.cub.2014.01.008
- https://doi.org//10.1128/MCB.24.6.2215-2225.2004