Data_Sheet_1_Recovery of the PHA Copolymer P(HB-co-HHx) With Non-halogenated Solvents: Influences on Molecular Weight and HHx-Content.pdf
Biodegradable and biocompatible polyhydroxyalkanoates (PHAs) are promising alternatives to conventional plastics. Based on the chain length of their monomers they are classified as short chain length (scl-) or medium chain length (mcl-) PHA polymers. The type of monomers, the composition and the molecular weight (MW) define the polymer properties. To accelerate the use of PHA as a bulk material, the downstream associated costs need to be minimized. This study focuses on the evaluation of non-halogenated solvents, especially acetone as a scl-PHA non-solvent, for the recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) – P(HB-co-HHx) – with an mcl-HHx content >15 mol% and a MW average (Mw) < 2 × 105 Da. Solvents and precipitants were chosen regarding zeotrope formation, boiling point differences, and toxicity. Non-halogenated solvent-precipitant pairs were evaluated regarding the MW characteristics (MWCs) of the extracted polymer. Acetone and 2-propanol as a low toxic and zeotropic solvent-precipitant pair was evaluated at different extraction temperatures and multiple extraction times. The extraction process was further evaluated by using impure acetone for the extraction and implementing a multi-stage extraction process. Additionally, P(HB-co-HHx) extracted with three different solvents was characterized by 1H and 13C-APT NMR. The screening of precipitants resulted in a negative influence on the MWCs by ethanol precipitation for extractions with acetone and ethyl acetate, respectively. It was observed, that extractions with acetone at 70°C extracted a higher fraction of PHA from the cells compared to extractions at RT, but the Mw was decreased by 9% in average. Acetone with a 2-propanol fraction of up to 30% was still able to extract the polymer 95% as efficient as pure acetone. Additionally, when acetone and ethyl acetate were used in a multi-stage extraction process, a two-stage process was sufficient to extract 98–99% of the polymer from the cells. 1H and 13C-APT NMR analysis confirmed the monomer fraction and structure of the extracted polymers and revealed a random copolymer structure. The presented strategy can be further developed to an ecological and economically feasible PHA downstream process and thus contributes to the commercialization of low-cost PHAs.
History
Usage metrics
Categories
- Bioprocessing, Bioproduction and Bioproducts
- Industrial Biotechnology Diagnostics (incl. Biosensors)
- Industrial Microbiology (incl. Biofeedstocks)
- Industrial Molecular Engineering of Nucleic Acids and Proteins
- Industrial Biotechnology not elsewhere classified
- Medical Biotechnology Diagnostics (incl. Biosensors)
- Biological Engineering
- Regenerative Medicine (incl. Stem Cells and Tissue Engineering)
- Medical Biotechnology not elsewhere classified
- Agricultural Marine Biotechnology
- Biomaterials
- Biomechanical Engineering
- Biotechnology
- Biomarkers
- Biomedical Engineering not elsewhere classified
- Genetic Engineering
- Synthetic Biology
- Bioremediation
- Medical Molecular Engineering of Nucleic Acids and Proteins