Data_Sheet_1_Quantification of Major Bacteria and Yeast Species in Kefir Consortia by Multiplex TaqMan qPCR.docx (1.12 MB)

Data_Sheet_1_Quantification of Major Bacteria and Yeast Species in Kefir Consortia by Multiplex TaqMan qPCR.docx

Download (1.12 MB)
dataset
posted on 16.06.2020 by Fatemeh Nejati, Stefan Junne, Jens Kurreck, Peter Neubauer

Kefir grains are complex microbial systems of several groups of microorganisms. The identification and quantification of the microbial composition of milk kefirs was described in several studies, which provided an insight into the microbial consortia in this complex ecosystem. Nevertheless, the current methods for identification and quantification are not appropriate for deeper studies on kefir consortia, e.g., population dynamics and microbial interactions in kefir grains. This requires another sensitive and reliable quantitative method. Therefore, this study aims to develop multiplexed qPCR assays to specifically detect and quantify, as an example, several microorganisms of the milk kefir microbial community. Primer-probe sets, which target species-specific genes in six bacteria and five yeasts, were designed, and their sensitivity and specificity to the target species was analyzed in simplex as well as four multiplex qPCR assays. The self-designed multiplex assays were applied for the detection of target bacteria and yeast species in milk kefirs, in both, grain and beverage fractions. Detection of all target microorganisms in simplex and multiplex qPCR was achieved by good linearity, efficiency, repeatability and reproducibility in all assays. When the designed assays were applied on six kefirs, all target microorganisms were detected in different samples, but not all in one kefir sample. The two ubiquitous lactobacilli Lactobacillus kefiranofaciens and Lb. kefiri were present in all six kefirs studied, but were associated with different other yeasts and bacteria. Especially on the yeast community a significant diversity was observed. In general, multiplex TaqMan qPCR as developed here was proven to have high potential for specific identification of target microorganisms in kefir samples and for the first time, eleven target bacteria and yeasts of kefir microbiota were rapidly detected and quantified. This study, thus, provides a fast and reliable protocol for future studies on kefir and other similar microbial ecosystems.

History

References

Licence

Exports