Data_Sheet_1_Predicting Functional Connectivity From Observed and Latent Structural Connectivity via Eigenvalue Mapping.PDF
Understanding how complex dynamic activity propagates over a static structural network is an overarching question in the field of neuroscience. Previous work has demonstrated that linear graph-theoretic models perform as well as non-linear neural simulations in predicting functional connectivity with the added benefits of low dimensionality and a closed-form solution which make them far less computationally expensive. Here we show a simple model relating the eigenvalues of the structural connectivity and functional networks using the Gamma function, producing a reliable prediction of functional connectivity with a single model parameter. We also investigate the impact of local activity diffusion and long-range interhemispheric connectivity on the structure-function model and show an improvement in functional connectivity prediction when accounting for such latent variables which are often excluded from traditional diffusion tensor imaging (DTI) methods.
History
References
- https://doi.org//10.1016/j.neuroimage.2018.02.016
- https://doi.org//10.1016/j.neuroimage.2020.117705
- https://doi.org//10.1016/j.neuroimage.2013.12.039
- https://doi.org//10.3389/fninf.2014.00014
- https://doi.org//10.1038/ncomms10340
- https://doi.org//10.1016/j.media.2007.06.004
- https://doi.org//10.1177/1073858416667720
- https://doi.org//10.1038/s41598-017-18769-x
- https://doi.org//10.1016/j.neuroimage.2011.01.042
- https://doi.org//10.3389/fnhum.2013.00623
- https://doi.org//10.1038/nrn2575
- https://doi.org//10.1016/j.jneumeth.2011.09.031
- https://doi.org//10.1016/j.copbio.2008.08.010
- https://doi.org//10.1002/%28SICI%291099-1492%28199706/08%2910%3A4/5%3C171%3A%3AAID-NBM453%3E3.0.CO;2-L
- https://doi.org//10.1016/j.neuroimage.2006.01.021
- https://doi.org//10.1016/j.media.2020.101799
- https://doi.org//10.1101/306951
- https://doi.org//10.4329/wjr.v6.i12.895
- https://doi.org//10.1016/S0896-6273%2802%2900569-X
- https://doi.org//10.1016/S1053-8119%2809%2970884-5
- https://doi.org//10.1016/j.neuroimage.2011.12.090
- https://doi.org//10.3389/fninf.2011.00013
- https://doi.org//10.1016/j.neuroimage.2009.06.060
- https://doi.org//10.5281/zenodo.2872624
- https://doi.org//10.1016/j.neuron.2010.04.020
- https://doi.org//10.1073/pnas.0811168106
- https://doi.org//10.1109/JPROC.2018.2798928
- https://doi.org//10.1006/nimg.2002.1132
- https://doi.org//10.1016/j.neuroimage.2011.09.015
- https://doi.org//10.1016/S1361-8415%2801%2900036-6
- https://doi.org//10.1016/S0167-2789%2896%2900166-2
- https://doi.org//10.1137/0701007
- https://doi.org//10.1093/cercor/bhs311
- https://doi.org//10.1371/journal.pcbi.1005325
- https://doi.org//10.1162/netn_a_00166
- https://doi.org//10.1016/j.neuroimage.2013.05.074
- https://doi.org//10.1038/s41562-017-0260-9
- https://doi.org//10.1089/brain.2015.0408
- https://doi.org//10.1227/NEU.0000000000001224
- https://doi.org//10.1016/j.neuroimage.2020.117364
- https://doi.org//10.1101/2020.12.21.423856
- https://doi.org//10.1016/0025-5564%2874%2990020-0
- https://doi.org//10.1073/pnas.1305062110
- https://doi.org//10.1089/brain.2013.0175
- https://doi.org//10.1016/j.neuroimage.2012.12.031
- https://doi.org//10.1016/j.neuroimage.2013.08.048
- https://doi.org//10.1038/s41467-019-12765-7
- https://doi.org//10.1016/j.neuroimage.2015.02.064
- https://doi.org//10.1002/hbm.24991
- https://doi.org//10.1016/j.neuroimage.2016.04.050
- https://doi.org//10.1371/journal.pone.0157292
- https://doi.org//10.1016/j.neuroimage.2013.06.018
- https://doi.org//10.1523/JNEUROSCI.4544-08.2008
- https://doi.org//10.1016/j.neuroimage.2020.116805
- https://doi.org//10.1109/TMI.2010.2046908
- https://doi.org//10.1523/JNEUROSCI.1453-11.2011
- https://doi.org//10.1016/j.tics.2013.09.011
- https://doi.org//10.1097/WNR.0b013e3282fb8203
- https://doi.org//10.1007/s004220050572
- https://doi.org//10.1007/s11065-014-9248-7
- https://doi.org//10.1016/j.neuroimage.2021.118190
- https://doi.org//10.1109/42.906424
- https://doi.org//10.1371/journal.pone.0213952
Usage metrics
Read the peer-reviewed publication
Categories
- Radiology and Organ Imaging
- Decision Making
- Autonomic Nervous System
- Cellular Nervous System
- Biological Engineering
- Central Nervous System
- Sensory Systems
- Neuroscience
- Endocrinology
- Artificial Intelligence and Image Processing
- Clinical Nursing: Tertiary (Rehabilitative)
- Image Processing
- Signal Processing
- Rehabilitation Engineering
- Biomedical Engineering not elsewhere classified
- Stem Cells
- Neurogenetics
- Developmental Biology