Data_Sheet_1_Marked Response in Microbial Community and Metabolism in the Ileum and Cecum of Suckling Piglets After Early Antibiotics Exposure.docx (1.31 MB)
0/0

Data_Sheet_1_Marked Response in Microbial Community and Metabolism in the Ileum and Cecum of Suckling Piglets After Early Antibiotics Exposure.docx

Download (1.31 MB)
dataset
posted on 30.05.2018 by Miao Yu, Chunlong Mu, Chuanjian Zhang, Yuxiang Yang, Yong Su, Weiyun Zhu

In modern swine husbandry systems, antibiotics have been used as growth promoters for piglets during suckling or weaning period. However, while early colonization of intestinal microbiota has been regarded crucial for the host’s later life performance and well-being, little is known about the impact of antibiotics on intestinal microbiota in suckling piglets. The present study aimed to investigate the effects of early antibiotics exposure on gut microbiota and microbial metabolism of suckling piglets. Sixteen litters of suckling piglets were fed a creep feed diet with (Antibiotic) or without (Control) antibiotics from postnatal days 7–23 (n = 8). The ileal and cecal digesta were obtained for microbial composition and microbial metabolites analysis. The results showed that the antibiotics significantly altered the bacterial community composition by decreasing (P < 0.05) the diversity and richness in the ileum. The antibiotics significantly reduced the abundance of Lactobacillus in both the ileum and cecum, increased the abundance of Streptococcus, unclassified Enterococcaceae, unclassified Fusobacteriales, and Corynebacterium in the ileum, and the abundance of unclassified Ruminococcaceae and unclassified Erysipelotrichaceae in the cecum. The antibiotics decreased (P < 0.05) ileal lactate concentration and cecal concentration of total short-chain fatty acids (SCFAs). But the antibiotics enhanced protein fermentation (P < 0.05) in the ileum and cecum, as ileal concentrations of putrescine and cadaverine, and cecal concentrations of isobutyrate, isovalerate, putrescine, cadaverine, spermine, and spermidine were significantly increased (P < 0.05). These results indicated that early antibiotics exposure significantly altered the microbial composition of suckling piglets toward a vulnerable and unhealthy gut environment. The findings provide a new insight on the antibiotics impact on neonates and may provide new framework for designing alternatives to the antibiotics toward a healthy practice for suckling piglets.

History

References

Licence

Exports