Data_Sheet_1_Iron(III)-Mediated Rapid Radical-Type Three-Component Deuteration of Quinoxalinones With Olefins and NaBD4.docx (5.46 MB)
Download fileData_Sheet_1_Iron(III)-Mediated Rapid Radical-Type Three-Component Deuteration of Quinoxalinones With Olefins and NaBD4.docx
dataset
posted on 2020-08-04, 07:08 authored by Wanmei Li, Heng Cai, Lin Huang, Lei He, Yilan Zhang, Jun Xu, Pengfei ZhangIron(III)-promoted rapid three-component deuteration of quinoxalinones with olefins and NaBD4 is reported for the first time, which provides a novel, economic, and efficient method for the rapid synthesis of deuterated quinoxalinones. In this transformation, a radical pathway is involved according to the results of control experiments.
History
References
- https://doi.org//10.1002/anie.201704146
- https://doi.org//10.1002/anie.200700039
- https://doi.org//10.1007/BF02976653
- https://doi.org//10.1039/C9QO01334B
- https://doi.org//10.1021/ja3063716
- https://doi.org//10.1002/adsc.201901419
- https://doi.org//10.1039/C9SC05132E
- https://doi.org//10.1002/adsc.201901212
- https://doi.org//10.1021/jm4007998
- https://doi.org//10.1021/cr100436k
- https://doi.org//10.1002/chem.201103347
- https://doi.org//10.1021/tx3000522
- https://doi.org//10.1021/acs.joc.9b01114
- https://doi.org//10.1039/C9QO00105K
- https://doi.org//10.1039/C3CC40588E
- https://doi.org//10.1002/ajoc.201900369
- https://doi.org//10.1039/CS9972600401
- https://doi.org//10.1038/nm0613-656
- https://doi.org//10.1039/C9OB00782B
- https://doi.org//10.1021/acscatal.7b02682
- https://doi.org//10.1039/C0CS00113A
- https://doi.org//10.1021/acs.orglett.7b02701
- https://doi.org//10.1021/acs.orglett.7b03313
- https://doi.org//10.1038/s41467-017-02551-8
- https://doi.org//10.1002/adsc.201900572
- https://doi.org//10.1021/jm1013693
- https://doi.org//10.1021/jm00022a014
- https://doi.org//10.1021/tx800139z
- https://doi.org//10.1021/acs.jpca.5b02850
- https://doi.org//10.1021/acs.jmedchem.8b01808
- https://doi.org//10.1021/acs.oprd.8b00011
- https://doi.org//10.1007/BF02975110
- https://doi.org//10.1039/C7NJ01893B
- https://doi.org//10.1038/nbt0617-493
- https://doi.org//10.1039/C8OB02942C
- https://doi.org//10.1002/adsc.201901314
- https://doi.org//10.1002/anie.201107334
- https://doi.org//10.1039/C4CS00347K
- https://doi.org//10.1021/jm00032a008
- https://doi.org//10.1002/adsc.201300687
- https://doi.org//10.1039/C9QO01055F
- https://doi.org//10.1002/adsc.201900066
- https://doi.org//10.1002/adsc.201900885
- https://doi.org//10.1007/s11426-018-9446-1
- https://doi.org//10.1021/acs.orglett.9b01784
- https://doi.org//10.1039/C9OB01169B
- https://doi.org//10.1002/asia.201900904
- https://doi.org//10.1021/acscatal.8b03717
- https://doi.org//10.1021/acs.chemrev.6b00620
- https://doi.org//10.1038/nature16464
- https://doi.org//10.1039/C9OB02203A
- https://doi.org//10.1021/acs.joc.9b00657
- https://doi.org//10.1021/acs.orglett.9b03955
- https://doi.org//10.1021/acs.orglett.8b03849
Usage metrics
Read the peer-reviewed publication
Categories
- Geochemistry
- Biochemistry
- Organic Chemistry
- Medical Biochemistry: Proteins and Peptides (incl. Medical Proteomics)
- Nuclear Chemistry
- Medical Biochemistry and Metabolomics not elsewhere classified
- Analytical Biochemistry
- Cell Neurochemistry
- Physical Organic Chemistry
- Enzymes
- Organic Green Chemistry
- Environmental Chemistry (incl. Atmospheric Chemistry)
- Catalysis and Mechanisms of Reactions
- Electroanalytical Chemistry
- Analytical Chemistry not elsewhere classified
- Environmental Chemistry
- Food Chemistry and Molecular Gastronomy (excl. Wine)
- Inorganic Chemistry