Data_Sheet_1_Histone Tail Dynamics in Partially Disassembled Nucleosomes During Chromatin Remodeling.pdf (2.55 MB)

Data_Sheet_1_Histone Tail Dynamics in Partially Disassembled Nucleosomes During Chromatin Remodeling.pdf

Download (2.55 MB)
dataset
posted on 28.11.2019 by Takeru Kameda, Akinori Awazu, Yuichi Togashi

Nucleosomes are structural units of the chromosome consisting of DNA wrapped around histone proteins, and play important roles in compaction and regulation of the chromatin structure. While the structure and dynamics of canonical nucleosomes have been studied extensively, those of nucleosomes in intermediate states, that occur when their structure or positioning is modulated, have been less understood. In particular, the dynamic features of partially disassembled nucleosomes have not been discussed in previous studies. Using all-atom molecular dynamics simulations, in this study, we investigated the dynamics and stability of nucleosome structures lacking a histone-dimer. DNA in nucleosomes lacking a histone H2A/H2B dimer was drastically deformed due to loss of local interactions between DNA and histones. In contrast, conformation of DNA in nucleosomes lacking H3/H4 was similar to the canonical nucleosome, as the H2A C-terminal domain infiltrated the space originally occupied by the dissociated H3/H4 histones and restricted DNA dynamics in close proximity. Our results suggest that, besides histone chaperones, the intrinsic dynamics of nucleosomes support the exchange of H2A/H2B, which is significantly more frequent than that of H3/H4.

History

References

Licence

Exports