Data_Sheet_1_Hierarchical Porous Graphene–Iron Carbide Hybrid Derived From Functionalized Graphene-Based Metal–Organic Gel as Efficient Electrochemical Dopamine Sensor.docx
A metal–organic gel (MOG) similar in constitution to MIL-100 (Fe) but containing a lower connectivity ligand (5-aminoisophthalate) was integrated with an isophthalate functionalized graphene (IG). The IG acted as a structure-directing templating agent, which also induced conductivity of the material. The MOG@IG was pyrolyzed at 600°C to obtain MGH-600, a hybrid of Fe/Fe3C/FeOx enveloped by graphene. MGH-600 shows a hierarchical pore structure, with micropores of 1.1 nm and a mesopore distribution between 2 and 6 nm, and Brunauer–Emmett–Teller surface area amounts to 216 m2/g. Furthermore, the MGH-600 composite displays magnetic properties, with bulk saturation magnetization value of 130 emu/g at room temperature. The material coated on glassy carbon electrode can distinguish between molecules with the same oxidation potential, such as dopamine in presence of ascorbic acid and revealed a satisfactory limit of detection and limit of quantification (4.39 × 10−7 and 1.33 × 10−6 M, respectively) for the neurotransmitter dopamine.
History
References
- https://doi.org//10.1016/j.electacta.2018.08.007
- https://doi.org//10.1039/C4SC02294G
- https://doi.org//10.1021/acsanm.8b01794
- https://doi.org//10.1002/tcr.201800068
- https://doi.org//10.3390/molecules24081632
- https://doi.org//10.1039/C5CC01701G
- https://doi.org//10.1016/j.microc.2018.08.003
- https://doi.org//10.1007/s00604-018-2876-5
- https://doi.org//10.1016/j.cej.2019.123836
- https://doi.org//10.1016/j.arabjc.2018.09.002
- https://doi.org//10.1016/j.elecom.2018.02.014
- https://doi.org//10.1007/s10008-018-4019-7
- https://doi.org//10.1039/C8NJ00857D
- https://doi.org//10.1016/j.ab.2014.12.013
- https://doi.org//10.1016/j.jhazmat.2019.03.019
- https://doi.org//10.1016/j.electacta.2019.02.053
- https://doi.org//10.1039/C6EE02171A
- https://doi.org//10.1016/j.apsusc.2017.11.230
- https://doi.org//10.1039/C8TB00938D
- https://doi.org//10.1021/jacs.9b08458
- https://doi.org//10.1038/nchem.444
- https://doi.org//10.1002/anie.201916649
- https://doi.org//10.1002/adma.201605307
- https://doi.org//10.1002/adma.201900820
- https://doi.org//10.1016/j.bios.2018.07.074
- https://doi.org//10.1007/BF02055410
- https://doi.org//10.1021/jacs.5b08212
- https://doi.org//10.1038/ncomms2757
- https://doi.org//10.1039/C8RA09511F
- https://doi.org//10.1002/aenm.201800716
- https://doi.org//10.1002/smll.201704435
- https://doi.org//10.1016/j.cclet.2019.04.009
- https://doi.org//10.1039/C4RA08988J
- https://doi.org//10.1039/B910175F
- https://doi.org//10.1021/jacs.6b07355
- https://doi.org//10.1039/C9AY00457B
- https://doi.org//10.1126/scitranslmed.3008488
- https://doi.org//10.1063/1.4759489
- https://doi.org//10.1088/1742-6596/217/1/012006
- https://doi.org//10.1016/j.electacta.2018.08.021
- https://doi.org//10.1039/C3AY26476A
- https://doi.org//10.1002/anie.201914198
- https://doi.org//10.1038/s41598-019-41229-7
- https://doi.org//10.1016/j.jpowsour.2019.04.007
- https://doi.org//10.1038/s41598-019-42093-1
- https://doi.org//10.1039/C7NJ04371F
- https://doi.org//10.1021/acsomega.6b00385
- https://doi.org//10.1166/jnn.2006.183
- https://doi.org//10.1021/acsami.8b14344
- https://doi.org//10.1016/j.jallcom.2013.11.087
- https://doi.org//10.1166/jnn.2018.15534
- https://doi.org//10.1021/acs.chemmater.9b00655
- https://doi.org//10.1039/C8RA05873C
- https://doi.org//10.1038/srep39469
- https://doi.org//10.1002/adfm.201402952
- https://doi.org//10.1002/adfm.201705356
- https://doi.org//10.1021/nn501783n
- https://doi.org//10.1016/j.cclet.2016.05.015
- https://doi.org//10.1002/adma.201704303
- https://doi.org//10.1038/s42004-018-0088-x
- https://doi.org//10.1039/C5CC06291H
- https://doi.org//10.1002/advs.201902008
- https://doi.org//10.1016/j.cclet.2019.05.006
- https://doi.org//10.1021/acsenergylett.6b00686
Usage metrics
Read the peer-reviewed publication
Categories
- Geochemistry
- Biochemistry
- Organic Chemistry
- Medical Biochemistry: Proteins and Peptides (incl. Medical Proteomics)
- Nuclear Chemistry
- Medical Biochemistry and Metabolomics not elsewhere classified
- Analytical Biochemistry
- Cell Neurochemistry
- Physical Organic Chemistry
- Enzymes
- Organic Green Chemistry
- Environmental Chemistry (incl. Atmospheric Chemistry)
- Catalysis and Mechanisms of Reactions
- Electroanalytical Chemistry
- Analytical Chemistry not elsewhere classified
- Environmental Chemistry
- Food Chemistry and Molecular Gastronomy (excl. Wine)
- Inorganic Chemistry