Data_Sheet_1_Design, Synthesis, and Temperature-Driven Molecular Conformation-Dependent Delayed Fluorescence Characteristics of Dianthrylboron-Based Donor–Acceptor Systems.PDF
We report a simple and novel molecular design strategy to enhance rISC in boron-based donor–acceptor systems to achieve improved delayed fluorescence characteristics. Dianthrylboryl ((An)2B)-based aryl aminoboranes 1 (donor: phenothiazine) and 2 (donor: N,N-diphenylamine) were synthesized by a simple one-pot procedure. The energy of the electronic excited states in 1 and 2 were modulated by varying the arylamine donor strength and electronic coupling between D and A moieties. The presence of a large π-system (anthryl moiety) on boron enhances the electronic communication between donor arylamine and acceptor boryl moieties, and hence, both 1 and 2 exhibit delayed fluorescence characteristics in a broad range of temperatures (80–300 K). Single crystal X-ray analysis and temperature-dependent photophysical studies together with theoretical studies were carried out to rationalize the observed intriguing optical signatures of 1 and 2.
History
Usage metrics
Categories
- Geochemistry
- Biochemistry
- Organic Chemistry
- Medical Biochemistry: Proteins and Peptides (incl. Medical Proteomics)
- Nuclear Chemistry
- Medical Biochemistry and Metabolomics not elsewhere classified
- Analytical Biochemistry
- Cell Neurochemistry
- Physical Organic Chemistry
- Enzymes
- Organic Green Chemistry
- Environmental Chemistry (incl. Atmospheric Chemistry)
- Catalysis and Mechanisms of Reactions
- Electroanalytical Chemistry
- Analytical Chemistry not elsewhere classified
- Environmental Chemistry
- Food Chemistry and Molecular Gastronomy (excl. Wine)
- Inorganic Chemistry