Data_Sheet_1_A CRISPR-Cas13a Based Strategy That Tracks and Degrades Toxic RNA in Myotonic Dystrophy Type 1.docx
Cas13a, an effector of type VI CRISPR-Cas systems, is an RNA guided RNase with multiplexing and therapeutic potential. This study employs the Leptotrichia shahii (Lsh) Cas13a and a repeat-based CRISPR RNA (crRNA) to track and eliminate toxic RNA aggregates in myotonic dystrophy type 1 (DM1) – a neuromuscular disease caused by CTG expansion in the DMPK gene. We demonstrate that LshCas13a cleaves CUG repeat RNA in biochemical assays and reduces toxic RNA load in patient-derived myoblasts. As a result, LshCas13a reverses the characteristic adult-to-embryonic missplicing events in several key genes that contribute to DM1 phenotype. The deactivated LshCas13a can further be repurposed to track RNA-rich organelles within cells. Our data highlights the reprogrammability of LshCas13a and the possible use of Cas13a to target expanded repeat sequences in microsatellite expansion diseases.
History
References
- https://doi.org//10.1038/nature24049
- https://doi.org//10.1126/science.aaf5573
- https://doi.org//10.1242/dmm.027367
- https://doi.org//10.1016/j.neuron.2015.10.038
- https://doi.org//10.1016/j.molcel.2014.08.027
- https://doi.org//10.1016/j.cell.2017.07.010
- https://doi.org//10.1212/wnl.0000000000005172
- https://doi.org//10.1093/nar/gku1275
- https://doi.org//10.1093/nar/gkv1210
- https://doi.org//10.1002/dvdy.24240
- https://doi.org//10.1016/j.gde.2017.03.006
- https://doi.org//10.1021/jacs.8b01233
- https://doi.org//10.1126/science.aaq0180
- https://doi.org//10.1093/nar/gky548
- https://doi.org//10.1038/nsmb.1720
- https://doi.org//10.1038/nature19802
- https://doi.org//10.1126/science.1088679
- https://doi.org//10.1371/journal.pone.0024308
- https://doi.org//10.1093/hmg/dds478
- https://doi.org//10.1038/nsmb.1958
- https://doi.org//10.1021/ja804398y
- https://doi.org//10.1038/sj.emboj.7601377
- https://doi.org//10.1038/mtna.2013.9
- https://doi.org//10.1016/j.celrep.2015.07.029
- https://doi.org//10.1126/science.aaq0179
- https://doi.org//10.3389/fncel.2017.00101
- https://doi.org//10.1038/s41591-018-0049-z
- https://doi.org//10.1093/hmg/ddm239
- https://doi.org//10.1021/acs.biochem.7b01239
- https://doi.org//10.1096/fj.09-151159
- https://doi.org//10.1038/nature22386
- https://doi.org//10.1016/j.omtn.2017.05.007
- https://doi.org//10.1093/hmg/ddh327
- https://doi.org//10.1093/nar/gky433
- https://doi.org//10.1093/toxsci/kft278
- https://doi.org//10.1038/srep30377
- https://doi.org//10.1093/hmg/ddt419
- https://doi.org//10.1038/nbt.4192
- https://doi.org//10.1016/j.molcel.2007.01.031
- https://doi.org//10.1007/978-3-540-34449-0_7
- https://doi.org//10.1016/j.molcel.2007.07.027
- https://doi.org//10.1016/s1525-0016(03)00068-6
- https://doi.org//10.1073/pnas.1117019109
- https://doi.org//10.1083/jcb.201302044
- https://doi.org//10.1016/j.cell.2016.12.031
- https://doi.org//10.3389/fneur.2018.00349
- https://doi.org//10.1126/science.1546325
- https://doi.org//10.1021/acschembio.7b00416
- https://doi.org//10.1111/gtc.12023
- https://doi.org//10.1016/j.brainres.2014.03.039
- https://doi.org//10.1073/pnas.0905780106
- https://doi.org//10.1126/science.aas8836
- https://doi.org//10.1038/cddis.2013.276
- https://doi.org//10.1074/jbc.272.49.31079
- https://doi.org//10.1016/j.cell.2016.02.054
- https://doi.org//10.1038/nrneurol.2017.126
- https://doi.org//10.1021/jacs.5b09266
- https://doi.org//10.1038/nature13769
- https://doi.org//10.1016/j.omtn.2017.10.006
- https://doi.org//10.1038/nsmb.2067
- https://doi.org//10.1021/acs.bioconjchem.5b00141
- https://doi.org//10.1371/journal.pone.0214254
- https://doi.org//10.1371/journal.pone.0184987
- https://doi.org//10.1371/journal.pone.0095611
- https://doi.org//10.1172/jci83185
- https://doi.org//10.1038/nchembio.2251
- https://doi.org//10.1021/acschembio.5b00430
- https://doi.org//10.1007/s11010-013-1681-z
- https://doi.org//10.1038/ng704
- https://doi.org//10.1038/mt.2012.222
- https://doi.org//10.1017/s1355838200991544
- https://doi.org//10.1016/j.biocel.2013.06.010
- https://doi.org//10.1083/jcb.200212128
- https://doi.org//10.1096/fj.09-151142
- https://doi.org//10.3389/fncel.2017.00082
- https://doi.org//10.1016/j.ymthe.2016.10.014
- https://doi.org//10.1016/j.ymthe.2018.09.003
- https://doi.org//10.1073/pnas.0903234106
- https://doi.org//10.1038/nature11362
- https://doi.org//10.1126/science.1173110
- https://doi.org//10.1016/j.gde.2017.01.005
- https://doi.org//10.1016/j.canlet.2018.05.042
- https://doi.org//10.1073/pnas.1013343108
Usage metrics
Read the peer-reviewed publication
Categories
- Gene and Molecular Therapy
- Biomarkers
- Genetics
- Genetically Modified Animals
- Developmental Genetics (incl. Sex Determination)
- Epigenetics (incl. Genome Methylation and Epigenomics)
- Gene Expression (incl. Microarray and other genome-wide approaches)
- Livestock Cloning
- Genome Structure and Regulation
- Genetic Engineering
- Genomics